
Guidelines for S3 Regression Models

Stephen Milborrow

June 1, 2021

Abstract

This document is intended for authors of R functions that build S3 regres-
sion models. It describes how these functions should interface to the rest of
the world. The intention is to summarize good practice, not to present new
techniques.

Models that follow the guidelines summarized in this document will be
compatible with tools that further process the model, such as functions
for analyzing model residuals or plotting regression surfaces.

Sample linear model code that can be used as a template for new mod-
els is supplied.

1 Introduction

Interface consistency is important for building and comparing R regression and classi-
fication models across different packages. For example, we should be able to use the
same data for models across different packages without being forced to make arbitrary
conversions to the data using as.matrix or as.data.frame.

Interface consistency is also important if we want to use the model in further processing.
For example, we may want to make predictions from different models in a uniform
manner, or plot the regression surfaces of different models using a function like plotmo1.

For an S3 model to be amenable to such processing it should follow some canonical
and commonly accepted interface standards (e.g. [1, 4]). These may be obvious to
experienced developers, but there are many packages on CRAN and GitHub that don’t
adhere to them.

What are the standards? This document attempts to give a convenient summary, by
way of a checklist and examples. The intention is to make explicit good practice and
to highlight some common mistakes.

1The plotmo function [3] is an example of a tool that needs to work across a wide variety of S3
models. I became aware of the issues discussed in this document while making plotmo work with
dozens of packages over the last decade.

1

https://cran.r-project.org/web/packages/plotmo/README.html

It is assumed that the reader already has some familiarity with creating packages for
regression models (e.g. [2]).

2 Checklist for S3 regression models

Code for building S3 regression models should adhere to the following guidelines. Some
of these may be disregarded in certain situations. This isn’t a comprehensive list, but
enough for most applications.

1. Give the model a unique class. In particular, class(model) shouldn’t return
"list". In the model-building function, do something like
class(model) <- "foo".

In general, the class name should be the name of the model-building function.
This means, for example, that if the model-building function is foo, the summary
and plot methods will be summary.foo and plot.foo, as expected.

2. Save the call with the model. In the model-building function, do something like
model$call <- match.call(). This expands any argument names that the user
abbreviated to their full names.

3. Provide both formula and x,y model-building functions. Name the formula method
modelclass.formula and the x,y method modelclass.default. Typically both
of these call an underlying function modelclass.fit.

4. For model functions with a formula interface, save the terms with the model. (A
terms object is a model formula with additional attributes, as described on the
help page for terms.object. Additional background is given in Chambers and
Hastie [1] and Venables and Ripley Section 4.2 [4].)

5. For model functions with an x,y interface:

i. Use x and y as the first two arguments to the model-building function, in
that order. Don’t call these arguments anything but x and y, unless that
isn’t meaningful for your model.

ii. The x,y interface should be as similar as possible to the formula interface.
Where possible, summary, predict, and friends should work in the same way
for models built with the x,y interface and the formula interface.

iii. Factor predictors: Typically the formula interface converts factors to zero/one
indicator columns.2 But it would be unusual for a model’s x,y interface to
convert factors to indicator columns. Therefore the x,y interface should re-
ject factors in x with an error message (even though the formula interface
converts factors to indicator columns—it is acceptable for the formula and
x,y interfaces to be inconsistent in this regard).

2 In this document, we assume that factors should be converted to indicator columns where appro-
priate, such as is done for lmmodels. However, certain models (such as rpart) have special handling for
factors. For these models, indicator columns are usually inappropriate because creating the indicator
columns hides the fact that the factor values originated from one variable.

2

In the x,y interface, using as.matrix as described below will correctly reject
factors and other unsuitable data. In the formula interface, the conversion
of factors comes automatically with the standard use of model.matrix (as
illustrated in the example code for linmod.formula later in this document).

iv. Be kind to the user and allow x and y to be data.frames, vectors (if
one-dimensional), or matrices. That is, automatically convert to a matrix

internally in the model function; don’t force the user to pre-convert the data.
Issue a clear error message when this conversion can’t be made.

We suggest as.matrix is used for the conversion to matrix. Note that
as.matrix converts all columns to strings if there are any factors or strings
in the input. So to check that the input could be correctly converted to
a numeric matrix, you need check only that the first element is numeric,
because either all or none of the converted matrix elements will be numeric.
Note that as.matrix is efficient in that it will simply return x if x is already
a matrix (it doesn’t make a copy of x).

Alternatively you can use data.matrix to make the conversion. This will
convert factors in a data.frame to their internal numeric representation.
This conversion implicitly assumes that any factors are ordered with equally
spaced levels, which isn’t true in general. Therefore for most models geared
towards continuous data, it’s better to issue an error message than to silently
make such conversions, i.e., use as.matrix rather than data.matrix unless
you have a special reason not to.

6. Provide a predict method for the model. The first two arguments for the predict
method should be object and newdata.

The default newdata should be NULL and this should be treated as if the user
specified the data used to build the model. If that isn’t possible unless keep (or
similar) was specified when building the model, issue an error message to that
effect.

The third argument for the predict method should be type, unless that isn’t mean-
ingful for your model. Make "response" one of the options for type, possibly
the default, unless that isn’t meaningful for the model. Apply the type argument
even with the default newdata=NULL; if that isn’t possible, issue an error message
rather than silently returning bad results.

Provide defaults for the other arguments where possible so the user can call
predict with minimum bother. Be kind to the user and allow newdata to be
a matrix or a data.frame.

7. If the model supports prediction or confidence levels, allow the user to access
those in the same way as predict.lm, i.e., when the appropriate arguments are
specified, predict should return a matrix with column names fit, lwr, and upr.

8. Allow the user to save the data used to generate the model with the model (i.e. save
the data, or x and y arguments). Save this information in fields named data or
x and y. Don’t use those names for anything else saved with the model.

A word of explanation. When using the model in further processing, we often need
to access the data used to build the model. To do that, we refer to the data via
the call or terms saved with the model. But if the data used to build the model
changes after the model is built, the saved call and terms will misleadingly refer

3

to the changed data. To avoid problems like that, it’s a good idea to save the
data with the model.

If subset is supported, the precedent is to save the data after taking the subset.

For models built with the x,y interface, we recommend that the response is saved
as a one-column matrix (not as a vector), with the response name as the column
name of the matrix. This allows functions that process the model to easily access
the response name for use in plot labels etc.

If memory use is a concern (generally it isn’t), give the user an option such as
keep=TRUE to save the data. (There isn’t a standard name for this argument—
different functions uses different names. In our opinion, please don’t follow the
precedent set by lm and name the argument x or y; that can cause confusion.3)

Note that saving the data doesn’t use as much memory as one might expect,
because R will merely create references to the data, not make a copy. On the
other hand, R’s automatic garbage collection won’t be able to release the memory
used by the data until the model is deleted.

9. It is good practice to provide the standard model functions. A basic list is
case.names, coef, fitted, model.matrix, na.action, plot, print.summary,
print, residuals, summary, update, variable.names, and weights. Not all of
those may apply to your model. Some of them come for free if the model is built
in the standard way (the default methods in the stats package will automatically
work for the model).

Note that coefficients, fitted.values, and resid methods are unnecessary,
since the standard functions for these dispatch to coef, fitted, and residuals.
For inference the following should be added where applicable: deviance, df.residual,
logLik, nobs, and vcov.

10. Don’t call missing() in your code. Accomplish the same thing by making the
default value of the argument NA or some other special value, and checking for
that value internally. (The use of missing in a function complicates code that
calls the function — it has to include two different calls to the function, one with
the argument and one without. This can get out of hand if missing is used on
more than argument.)

11. Allow the user to abbreviate argument names and values. Use match.arg or
similar to match arguments that take strings.

3 Note also that lm.fit shouldn’t be used as an example of an x,y interface — because, for example,
predict can’t be used to make predictions on lm.fit models. Instead use a “.default” function as
described in item 3 in the above list.

4

3 Example S3 Models

This section presents three successive refinements of code for building linear models.
Impatient readers can skip directly to the final model in Section 3.3.

(i) The first model is from Friedrich Leisch’s tutorial on creating R packages [2]. That
tutorial discusses the use of S3 methods in model-building functions, and describes
model.frame and related functions. To those ends, the code in the tutorial is inten-
tionally kept bare-bones and lacks some useful facilities.

(ii) The second model extends the first model slightly. Its predict method is more
complete, and sufficient for functions like plotmo. However its handling of illegal input
is inadequate, and its error messages are often unhelpful.

(ii) The third model extends the model further. It meets the guidelines in Section 2,
and issues (mostly) clear error messages for illegal input. It has been thoroughly tested
and can be used as a template for authors developing new models.

3.1 Model 1: A basic linear model

Friedrich Leisch’s tutorial [2] is a good introduction to building R packages, and is
recommended for a broader context on some of the ideas discussed in this document.

The bare-bones linmod code in the tutorial, although a very good starting point and
ideal for the purposes of the tutorial, has limitations that can create problems with
functions that further process the model.

For example, making predictions from models built with the code isn’t quite plain
sailing:

data(trees)

fit1 <- linmod(Volume~., data = trees)

predict(fit1, newdata = data.frame(Girth = 10, Height = 80))

gives

Error in eval(expr, envir, enclos) : object 'Volume' not found

and

fit2 <- linmod(cbind(Intercept = 1, trees[,1:2]), trees[,3])

predict(fit2, newdata = trees[,1:2])

gives the puzzling message

Error in x %*% coef(object) : requires numeric/complex matrix/vector arguments.

5

http://cran.r-project.org/doc/contrib/Leisch-CreatingPackages.pdf

3.2 Model 2: Extending the basic model

Tools that process S3 models can sometimes be modified to work around the issues
mentioned above, but a better solution is to extend the basic linear model. Figure 1
shows a way of doing that.

On models built with the code in Figure 1, the examples in Section 3.1 now work
correctly. One way of doing further checks on the model is to run plotmo — this
checks that the data used to build the model can be retrieved and that predict works
as expected. (The flat regression surfaces of the linear model aren’t of much intrinsic
interest; we use plotmo here to plot the surfaces merely as a check that the model
behaves.)

library(plotmo)

data(trees)

fit1 <- linmod(Volume~., data=trees) # formula interface

plotmo(fit1) # plotmo works as expected

fit2 <- linmod(trees[,1:2], trees[,3]) # x,y interface

plotmo(fit2) # plotmo works as expected

The new linmod.formula saves the model terms, not just the formula. The new
predict.linmod accepts a data.frame or a matrix, as users often expect. Note also
that the new linmod.default doesn’t require the user to manually add an intercept
column. There are a few minor changes to the model fields for closer compatibility
with lm.

Functions like print.linmod in Friedrich Leisch’s tutorial haven’t been modified for
the new model, and don’t appear in Figure 1.

3.2.1 Limitations of Model 2

Production code should include sanity tests that aren’t included in Figure 1. Error
handling can be substantially improved. To prevent confusing downstream error mes-
sages, we should check that the input data can be converted to numeric, and contains
no NAs.

For example, with NAs in the input data a message like

Error in linmod.fit(x, y) : NA in x

is better than the message issued with the Figure 1 code

Error in qr.default(x) : NA/NaN/Inf in foreign function call (arg 1).

With factors in the x passed to linmod.default, a message like

Error in linmod.default(x, y) : non-numeric column in x

is a lot clearer than the message issued with the Figure 1 code

Error in qr.default(x) : NAs introduced by coercion.

6

A simple linear model (extended from Friedrich Leisch's tutorial).

Functions like print.linmod in the tutorial don't appear in the code below.

linmod <- function(...) UseMethod("linmod")

linmod.fit <- function(x, y) # internal function, not for the casual user

{ # first column of x is the intercept (all 1s)

y <- as.vector(as.matrix(y)) # necessary when y is a data.frame

qx <- qr(x) # QR-decomposition of x

coef <- solve.qr(qx, y) # compute (x'x)^(-1) x'y

df.residual <- nrow(x) - ncol(x) # degrees of freedom

sigma2 <- sum((y - x %*% coef)^2) / df.residual # variance of residuals

vcov <- sigma2 * chol2inv(qx$qr) # covar mat is sigma^2 * (x'x)^(-1)

colnames(vcov) <- rownames(vcov) <- colnames(x)

fitted.values <- qr.fitted(qx, y)

names(fitted.values) <- rownames(x)

fit <- list(coefficients = coef,

residuals = y - fitted.values,

fitted.values = fitted.values,

vcov = vcov,

sigma = sqrt(sigma2),

df.residual = df.residual)

class(fit) <- "linmod"

fit

}

linmod.default <- function(x, y, ...)

{

fit <- linmod.fit(cbind("(Intercept)"=1, as.matrix(x)), y)

fit$call <- match.call()

fit

}

linmod.formula <- function(formula, data=parent.frame(), ...)

{

mf <- model.frame(formula=formula, data=data)

terms <- attr(mf, "terms")

fit <- linmod.fit(model.matrix(terms, mf), model.response(mf))

fit$call <- match.call()

fit$terms <- terms

fit

}

predict.linmod <- function(object, newdata=NULL, ...)

{

if(is.null(newdata))

y <- fitted(object)

else {

if(is.null(object$terms)) # x,y interface

x <- cbind(1, as.matrix(newdata))

else { # formula interface

terms <- delete.response(object$terms)

x <- model.matrix(terms, model.frame(terms, as.data.frame(newdata)))

}

y <- as.vector(x %*% coef(object))

}

y

}

Figure 1: A simple linear model (called Model 2 in the text).
This model is discussed in Section 3.2.

7

Similar tests should be made in predict.linmod. Production quality code should also
ensure that the predictors and the response have conformable dimensions, and take
care of details like propagating rownames in the input data to the residuals and other
returned fields. The user should be notified about issues with collinearity.

3.3 Model 3: A complete linear model

More complete code for building linear models is in the file www.milbo.org/doc/linmod.R.
We suggest that this file is used as a template for new S3 models (rather than the code in
Figure 1). It addresses the limitations mentioned above, and adheres to the guidelines
in Section 2.

The following list answers some common questions about the code in the file.

• The code is intended as a template for new kinds of model. A linear model is
used just as an example.

• To convert the code to a new model:

i. Replace all occurrences of “linmod” with the new model name.

ii. Modify do.linmod.fit, do.predict.linmod, and the method functions
(print.linmod and friends). The code specific to linear models can be easily
separated from the general-purpose code (such as the code that checks and
converts the input data).

• The code has been comprehensively tested to check that it behaves appropriately
with both legal and illegal inputs. See test.linmod.R in the slowtests directory
of the plotmo package.

• Illegal inputs cause error messages (silent failures are avoided). These error mes-
sages try to be as clear as possible.

• The following aren’t supported (and will cause an error message if attempted):

i. NAs in the response or predictors.

ii. The subset, weights, and na.action arguments.

iii. Factor responses (although factor predictors are supported, see below).

iv. Multiple responses (the response must be a vector or have one column).

These features are intentionally omitted to keep the example simple. Where
necessary they can be added by extending the code in a straightforward fashion.

• Factor predictors are supported by linmod.formula (factors are expanded to
indicator columns using contrasts in the standard way). Factor predictors aren’t
allowed by linmod.default (x must be numeric or logical).

• The code handles the model formula in a basic way is suitable for most appli-
cations. See [4] for more advanced handling (including subset, weights, and
na.action) and [5] for a more modern treatment of formulas with extensions.

• Non-intercept models are allowed by linmod.formula but not by linmod.default.

8

http://www.milbo.org/doc/linmod.R

• Additional method functions such as variable.names.linmod may be found in
the file www.milbo.org/doc/linmod.methods.R.

• There is some inconsistency between the way the predict newdata is handled for
models built with the formula interface and models built with the x,y interface.
This is regrettable but not a big deal in practice, and full consistency would
require a lot more code. Both types of model accept newdata as a matrix or a
data.frame, but differ in details as follows.

For models built with the x,y interface: The newdata must have the same number
of columns as the x used to build the model. Column order matters. Column
names are ignored. The newdata may also be a vector (with length a multiple of
the number of original columns).

Models built with the formula interface have the same behavior as predict.lm:
All variable/column names present in the original data must be present in the
newdata, and the variable classes must match the originals (otherwise an error
message will be issued). The newdata columns may be in any order (i.e. what
matters is the column names not the column order). Extra columns if present
will be silently ignored.

A thanks goes out to Achim Zeileis for feedback on an early version of this document.

References

[1] J.M. Chambers and T.J. Hastie. Statistical Models in S. Chapman and Hall/CRC,
1991. Cited on pages 1 and 2.

[2] Friedrich Leisch. Creating R Packages: A Tutorial. Compstat Proceedings in
Computational Statistics, 2008. https://CRAN.R-project.org/doc/contrib/

Leisch-CreatingPackages.pdf. Cited on pages 2 and 5.

[3] S. Milborrow. plotmo: Plot a Model’s Residuals, Response, and Partial Dependence
Plots, 2018. R package, https://CRAN.R-project.org/package=plotmo. Cited
on page 1.

[4] W.N. Venables and B.D. Ripley. S Programming. Springer, 2000. http://www.

stats.ox.ac.uk/pub/MASS3/Sprog. Cited on pages 1, 2, and 8.

[5] Achim Zeileis and Yves Croissant. Extended Model Formulas in R: Multiple
Parts and Multiple Responses. Journal of Statistical Software, 2010. https://

cran.r-project.org/web/packages/Formula/vignettes/Formula.pdf. Cited
on page 8.

9

http://www.milbo.org/doc/linmod.methods.R
https://CRAN.R-project.org/doc/contrib/Leisch-CreatingPackages.pdf
https://CRAN.R-project.org/doc/contrib/Leisch-CreatingPackages.pdf
https://CRAN.R-project.org/package=plotmo
http://www.stats.ox.ac.uk/pub/MASS3/Sprog
http://www.stats.ox.ac.uk/pub/MASS3/Sprog
https://cran.r-project.org/web/packages/Formula/vignettes/Formula.pdf
https://cran.r-project.org/web/packages/Formula/vignettes/Formula.pdf

