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1 Introduction

The functions in the rpart.plot R package plot rpart trees [6,7]. The next page shows some examples (Fig-
ure 1).

The workhorse function is prp. It automatically scales and adjusts the displayed tree for best fit. It combines
and extends the plot.rpart and text.rpart functions in the rpart package.

Sections 2 and 3 of this document (the Quick Start and the Main Arguments) are the most important.
Section 4 describes rpart.rules, which prints a tree as a set of rules. The remaining sections may be
skipped or read in any order.

I assume you have already looked at the vignette included with the rpart package [7]:
An Introduction to Recursive Partitioning Using the RPART Routines by Therneau and Atkinson.

2 Quick start

The easiest way to plot a tree is to use rpart.plot. This function is a simplified front-end to the workhorse
function prp, with only the most useful arguments of that function. Its arguments are defaulted to display a
tree with colors and details appropriate for the model’s response (whereas prp by default displays a minimal
unadorned tree).

As described in the section below, the overall characteristics of the displayed tree can be changed with the
type and extra arguments

3 Main arguments

This section is an overview of the important arguments to prp and rpart.plot. For most users these
arguments should suffice and the many other arguments can be ignored.

Use type to determine the overall plotting style, as shown in Figure 2.

Use extra to add more details to the node labels, as shown in Figures 3 and 4. Use under = TRUE to put
those details under the boxes (instead of in the boxes). With extra = "auto" (the default for rpart.plot),
a suitable value for extra will be chosen automatically (based on the type of response for the model). Figure 1
illustrates. The help page has details.

Use digits, varlen, and faclen to display more significant digits and more characters in names. In partic-
ular, use the special values varlen = 0 and faclen = 0 to display full variable and factor names.

The character size will be calculated automatically, unless cex is explicitly set. Use tweak to adjust the
automatically calculated size, often something like tweak = 0.8 or tweak = 1.2. Using tweak is often
easier than specifying cex.

The intensity of a node’s color is proportional to the value predicted at the node. The color scheme can be
changed with the box.palette argument. For details see the help page and Section 7.1. Examples:

box.palette = "auto" automatically choose a palette (default for rpart.plot, Figure 1)
box.palette = 0 uncolored (white) boxes (default for prp)
box.palette = "Grays" a range of grays ("Grays" is one of the built in palettes)
box.palette = "gray" uniform gray boxes
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A model with a binary response.

binary.model <- rpart(survived ∼ ., data = ptitanic, cp = .02)

rpart.plot(binary.model)

Each node shows

- the predicted class (died or survived),

- the predicted probability of survival,

- the percentage of observations in the node.

A model with a continuous response (an anova model).

anova.model <- rpart(Mileage ∼ ., data=cu.summary)

rpart.plot(anova.model)

Each node shows

- the predicted value,

- the percentage of observations in the node.

A model with a multi-class response.

multi.class.model <- rpart(Reliability ∼ ., data = cu.summary)

rpart.plot(multi.class.model)

Each node shows

- the predicted class (Much worse, worse, ..., Much better),

- the predicted probability of each class,

- the percentage of observations in the node.

In this example, the class better is never predicted by

the model, and thus is marked unused in the legend.

Use trace = 1 to see the auto-positioned x,y coordinates of the legend.

This position can be adjusted with the legend.x and

legend.y arguments.

Figure 1: rpart.plot with default arguments and different kinds of model
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Figure 2: The type argument.

You may also want to look at fallen.leaves (put the leaves at the bottom), uniform (vertically space the
nodes uniformly or proportionally to the fit), and shadow (add shadows to the node boxes). Section 4.1
illustrates the roundint and clip.facs arguments.

When dealing with the many arguments of prp, it helps to remember that the display has four constituents:
the node labels, the split labels, the branch lines, and the optional node numbers. Each of these constituents
has a complete set of col etc. arguments. Thus we have, for example, col (the color of the node label text),
split.col (the split text), branch.col (the branch lines), and nn.col (the optional node numbers).

Standard graphics parameters such as col can be passed in as ... arguments. So where the help page refers
to the col argument, what is meant is the col argument passed in as a ... argument, and if it is not passed
in, the value of par("col"). Such parameters typically affect only the node labels, not the split labels or
other constituents of the display.
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Figure 3: The extra argument with an anova model. Percentages are included by adding 100 to extra.
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Figure 4: The extra argument with a class model. This figure also illustrates under = TRUE which puts the
extra data under the box.
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4 Printing rules with rpart.rules

An rpart tree can be printed as a set of rules using the function rpart.rules. The rules are sometimes
clearer or more convenient than the plotted tree.

For example, we build a model to predict the volume of usable timber from cherry trees:

data(trees)

volume <- rpart(Volume ~ ., data = trees)

rpart.plot(volume, type = 3, clip.right.labs = FALSE, branch = .3, under = TRUE)

rpart.rules(volume)

The resulting tree and rules (shown in blue) are:

Girth < 16

Girth < 12

Girth >= 16

Girth >= 12

48% 29% 23%

18 31 56

Volume

18 when Girth < 12

31 when Girth is 12 to 16

56 when Girth >= 16

We can see that the rpart algorithm discards the Height variable in the trees data, and estimates the
Volume by separating the Girth into three partitions. Notice how the two conditions along the left side of
the tree (Girth < 16 and Girth < 12) are collapsed into the single rule Girth < 12.

Another example is the probability of survival of Titanic passengers:

data(ptitanic)

survived <- rpart(survived ~ ., data = ptitanic, cp = .02)

rpart.plot(survived, type = 3, clip.right.labs = FALSE, branch = .3, under = TRUE)

rpart.rules(survived, cover = TRUE)

The tree and rules are:

sex = male

age >= 9.5

sibsp >= 3

sex = female

age < 9.5

sibsp < 3

0.17  61% 0.05  2% 0.89  2% 0.73  36%

died died survived survived

survived cover

0.05 when sex is male & age < 9.5 & sibsp >= 3 2%

0.17 when sex is male & age >= 9.5 61%

0.73 when sex is female 36%

0.89 when sex is male & age < 9.5 & sibsp < 3 2%

The left column of the rules gives the survived probability. The rules are sorted on this column. The
rightmost column gives the percentage of observations in each rule (printed because we used the optional
cover = TRUE argument).

Starting at the bottom, the last rule says that young boys without many siblings had a survival probability
of 0.89.1 Presumably (and poignantly) boys with more siblings stayed with their families rather than board
a lifeboat. The cover column on the right shows that only 2% of the passengers fell into this rule.

The second rule from the bottom says simply that females had a 0.73 survival probability, and the entry in
the cover column show that 36% of the passengers were female.

By building trees with different combinations of variables and complexity cp, it’s possible to see how younger
females were more likely to survive, and so were people in higher classes. (Not shown here.)

1sibsp is the number of siblings and spouses aboard.
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4.1 Arguments for rules

This section discusses a couple of arguments that are useful for rules. Actually these arguments can also be
used for trees plotted by rpart.plot and prp, but are perhaps more clearly illustrated in the rules.

The roundint argument

With roundint = TRUE (default) the splits for a predictor are rounded to integer, if all values of that predictor
in the training data are integers. This is helpful, because for integer predictors rpart usually creates splits
ending in .5. Compare the following two sets of rules, focusing on the red text:

> rpart.rules(survived) # default roundint = TRUE

survived

0.05 when sex is male & age < 9.5 & sibsp >= 3

0.17 when sex is male & age >= 9.5

0.73 when sex is female

0.89 when sex is male & age < 9.5 & sibsp < 3

> rpart.rules(survived, roundint = FALSE)

survived

0.05 when sex is male & age < 9.5 & sibsp >= 2.5

0.17 when sex is male & age >= 9.5

0.73 when sex is female

0.89 when sex is male & age < 9.5 & sibsp < 2.5

When roundint = TRUE (default), the splits on sibsp are printed as integers, because all values of sibsp
in the input data are integers. The number of a passenger’s siblings and parents is always an integer. Given
this, the two sets of rules behave identically.

When roundint = FALSE, the splits on sibsp are printed as they are modeled in the tree (and printed by
print.rpart).

In this example, the roundint setting doesn’t affect age, because there are non-integer ages in the input
data (some infants had ages less than a year).

Note that roundint = TRUE requires access to the data used to build the model, which isn’t always available
(in which case a warning will be issued and the rules will be printed as if roundint = FALSE).

The clip.facs argument

Use the clip.facs argument (by default FALSE) to reduce the amount of text by dropping predictor names
for factors. Compare the following two sets of rules, focusing on the red text:

> rpart.rules(survived) # default clip.facs = FALSE

survived

0.05 when sex is male & age < 9.5 & sibsp >= 3

0.17 when sex is male & age >= 9.5

0.73 when sex is female

0.89 when sex is male & age < 9.5 & sibsp < 3

> rpart.rules(survived, clip.facs = TRUE)

survived

0.05 when male & age < 9.5 & sibsp >= 3

0.17 when male & age >= 9.5

0.73 when female

0.89 when male & age < 9.5 & sibsp < 3
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The extra argument

The default for the extra argument is the same as for rpart.plot, i.e., a sensible default is automatically
chosen based on the type of model. For binomial models like the Titanic survival model, this means that the
probability of the second class is shown (extra = 6, illustrated in Figure 4). To show the fitted class and
probabilities for both classes use extra = 4:

> rpart.rules(survived, extra = 4, cover = TRUE)

survived die sur cover

died [.95 .05] when sex is male & age < 9.5 & sibsp >= 3 2%

died [.83 .17] when sex is male & age >= 9.5 61%

survived [.27 .73] when sex is female 36%

survived [.11 .89] when sex is male & age < 9.5 & sibsp < 3 2%

Using extra = 9, we can show the overall probability at each rule (instead of the probability conditioned on
the rule):

> rpart.rules(survived, extra = 9, cover = TRUE)

survived die sur cover

died [.01 .00] when sex is male & age < 9.5 & sibsp >= 3 2%

died [.50 .10] when sex is male & age >= 9.5 61%

survived [.00 .02] when sex is male & age < 9.5 & sibsp < 3 2%

survived [.10 .26] when sex is female 36%

Notice first that the rules are (somewhat) reordered because the probabilities used for sorting are different
with the change to extra.

The sum of probabilities across all rules and classes is 1, up to rounding. In the last rule, we see that a
fraction 0.26 of all who survived is covered by the rule.

In contrast, in the same rule on the top of the page we see that a fraction 0.73 of the passengers covered by
the rule survived. In that set of rules, the sum of probabilities for each rule is 1.

The digits argument

The default digits = 2 is quite low, to reduce noise. Change to a higher value if necessary. Specify the
special value digits = 0 to use getOption("digits").

The digits argument for rpart.rules is handled a little differently from the same argument for rpart.plot.
Numbers in rules are printed using R standard data.frame processing for digits (meaning that digits is
adjusted internally for optimum formatting taking into account all the numbers in a column). Engineering
notation isn’t used in the rules, since lining up numbers vertically in mixed engineering and standard notation
isn’t really feasible.

The rule used to make a prediction

The function rpart.predict shows the rules used to make predictions. For example:

> rpart.predict(survived, newdata=ptitanic[1:3,], rules=TRUE)

died survived

1 0.27253 0.72747 because sex is female

2 0.11111 0.88889 because sex is male & age < 9.5 & sibsp < 3

3 0.27253 0.72747 because sex is female
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5 FAQ

5.1 The text is too small. Can I make it bigger?

Set fallen.leaves to FALSE.

Use the tweak argument to make the text larger, e.g. tweak = 1.2. This may cause overlapping labels.
However, there is a little elbow room because of the whitespace between the labels

Alternatively, we can reduce the whitespace around the text, allowing prp to (automatically) use a larger
type size. Do this by reducing the gap between boxes and the box space around the text (try gap = 0

and/or space = 0).

Text size will often be too small with uniform = FALSE, arguably a bug in prp.

5.2 The graph is too cluttered. Can I reduce the clutter?

Use the tweak argument to make the text smaller, e.g. tweak = .8.
Or use an explicit value for cex, experimenting until the displayed graph looks right.

Consider using compress = FALSE and ycompress = FALSE, so prp does not shift nodes around to make
space. Figure 27 on page 33 illustrates the effect of compress and ycompress.

5.3 What arguments should I use for the clearest tree?

For audiences unfamiliar with trees, one approach is to use is to use yesno = 2 to print yes and no at every
split (Figure 5 second tree).

But perhaps the clearest trees are obtained with type = 3 and clip.right.labs = FALSE (Figure 5 third
tree). This explicitly labels both left and right hand branches of each split. In the example tree we also use
branch = .3 to draw the branch lines at an angle—I think this makes the tree structure a bit more clear.
You could also try under = TRUE to put details under the boxes instead of in them.

If you need labels on the interior nodes, use type = 4 instead of type = 3, but this often results in text
that is very small (Figure 5 rightmost tree).

A problem with using type 3 or 4 with larger trees is that the diplayed text can be too small. This is one
reason these values aren’t the defaults—the defaults try to strike a balance between clarity, redundancy,

default

sex = male

age >= 9.5

sibsp >= 3

died

0.38

100%

died

0.19

64%

died

0.17

61%

survived

0.53

4%

died

0.05

2%

survived

0.89

2%

survived

0.73

36%

yes no

yesno=2
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 sibsp >= 3

died

0.38

100%

died

0.19

64%

died

0.17

61%

survived
0.53

4%

died

0.05
2%

survived

0.89
2%

survived

0.73
36%

yes no

yes no

yes no

type=3
clip.right.labs=FALSE

branch=.3

sex = male

age >= 9.5

sibsp >= 3

sex = female

age < 9.5

sibsp < 3

died
0.17
61%

died
0.05
2%

survived
0.89
2%

survived
0.73
36%

type=4
clip.right.labs=FALSE

branch=.3

sex = male

age >= 9.5

sibsp >= 3
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age < 9.5

sibsp < 3

died
0.38

100%

died
0.19
64%

died
0.17
61%

survived
0.53
4%

died
0.05
2%

survived
0.89
2%

survived
0.73
36%

Figure 5: Using the type and other arguments to make interpretation of the splits more obvious.
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clutter, and text size in the available screen space.

5.4 How do I reproduce the graph on the cover page of this document?

The code for most of the graphs in this document is in the file inst/slowtests/vingette.R included in the
source code of rpart.plot.

To answer your specific question, use the following code to reproduce the graph on the cover page:

pdf("front.pdf")

library(earth) # for the ozone1 data

data(ozone1)

a <- rpart(O3 ~ ., data = ozone1, cp = .024)

prp(a,

type = 4, # left and right split labels (see Figure 2)

clip.right.labs = FALSE, # full right split labels

extra = 101, # show nbr of obs and percentages (see Figure 3)

under = TRUE, # position extra info _under_ the boxes

under.cex = 1, # size of text under the boxes (default is .8)

fallen.leaves = TRUE, # put leaves at the bottom of plot

box.palette = "GnYlRd", # color of the boxes

branch = .3, # branch lines with narrow shoulders and down slopes

round = 0, # no rounding of node corners i.e. use rectangles

leaf.round = 9, # round leaf nodes (for leaves, this supersedes the round arg)

prefix = "ozone\n", # prepend this string to the node labels

main = "An Example", # main title

cex.main = 1.5, # use big text for main title

branch.col = "gray", # color of branch lines

branch.lwd = 2) # line width of branch lines

dev.off() # close pdf file

5.5 I always use the same arguments to prp. Can I reduce the amount of typing?

There is a standard R recipe for this kind of thing. Create a wrapper function with the defaults we want:

p <- function(x, type = 4, extra = 100, under = TRUE, branch.lty = 3, ...)

{

prp(x = x, type = type, extra = extra, under = under, branch.lty = branch.lty, ...)

}

Calling p(tree) will draw the tree using our defaults, which can be overridden when necessary. We can pass
any additional arguments to prp via our function’s ... argument.

The next step is to put the above code into your .Rprofile file so the function is always available. Locating
that file can be the hardest part of the exercise. Under Windows 7, use this:

C:\Users\username\Documents\.Rprofile

Enter ?.Rprofile at the R prompt for details.
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rpart.plot (default)
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61%
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fancyRpartPlot

Rattle 2018−Jul−09 10:29:16 milbo

Figure 6: Using rpart.plot to get the same graphs as fancyRpartPlot.

5.6 How do I emulate fancyRpartPlot in the rattle package?

The popular fancyRpartPlot [8] function calls rpart.plot internally.

Invoking rpart.plot with the default arguments gives results similar to fancyRpartPlot, but with slightly
fewer display elements (Figure 6 left side):

rpart.plot(binary.model) # left graph

For this binary-response model we can get a graph that is very similar to fancyRpartPlot using the following
arguments (Figure 6 middle):

rpart.plot(binary.model, # middle graph

extra = 104, # show fitted class, probs, percentages

box.palette = "GnBu", # color scheme

branch.lty = 3, # dotted branch lines

shadow.col = "gray", # shadows under the node boxes

nn = TRUE) # display the node numbers

5.7 Please explain the warning Unrecognized rpart object

This warning is issued if your rpart object is not one of those recognized by prp, but prp is nevertheless
attempting to plot the tree. You typically see this warning if your tree was created by a package that is not
rpart although based on rpart, or if your rpart model has user splits.

Details: The prp node-labeling code recognizes the following values for the method field of a tree: "anova",
"class", "poisson", "exp", and "mrt". If method is not one of those values, prp looks at the object’s
frame to deduce if it can treat the object as it were an "anova" or "class" rpart model. If so, prp’s extra
argument will work as described on prp’s help page. If not, prp calls the “text” function for the object (see
the rpart documentation).

Note to package writers: To allow prp to be easily extended to recognize your trees, (i) your object’s class
should be c("yourclass", "rpart") not plain "rpart", or (ii) your object’s method should be not be one
of the standard strings mentioned above and not "user".
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5.8 Citing the package

Stephen Milborrow. rpart.plot: Plot rpart Models. An Enhanced Version of plot.rpart., 2016. R Package.

@Manual{rpart.plotpackage,

author = {Stephen Milborrow},

title = {{rpart.plot: Plot rpart Models. An Enhanced Version of plot.rpart}},

year = {2016},

note = {R package},

url = {http://CRAN.R-project.org/package=rpart.plot }

}
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sex = mal

age >= 9.5

sibsp >= 3
fraction

0.17

fraction

0.05

fraction

0.89

fraction

0.73

yes no

Figure 7: Adding a con-
stant prefix “fraction”
to the node labels using
prefix = "fraction".

6 Customizing the node labels

In this section we look at ways of customizing the data displayed at each node.

To start off, consider using the extra argument to display additional information. See Figures 3 and 4 and
the prp help page for details.

To simply display a constant string at each leaf use the prefix argument (Figure 7):

data(ptitanic)

tree <- rpart(survived ~ ., data = ptitanic, cp = .02)

prp(tree, extra = 7, prefix = "fraction\n")

We will use this model as a running example. In the data the response survived is a factor and thus
by default rpart builds a class tree. The cp argument is used to keep the tree small for simplicity, and
extra = 7 is used to display the fitted probability of survival but not the fitted class.

An aside: By default rpart will treat a logical response as an integer and build an anova model, which
is usually inappropriate for a binary response. So if your response is logical, first convert it to a factor so
rpart builds a class model:

my.data$response <- factor(my.data$response, labels = c("No", "Yes"))

Or explicitly use method = "class" when invoking rpart, although that may be easy to forget.

The prefix argument can be a vector, allowing us to display node-specific text in much the same way that
node-specific colors are displayed in Section 7.

If we need something more flexible we can define a labeling function to generate the node text. The usual
rpart way of doing that is to associate a function with the rpart object (functions$text). However,
prp does not call that function for the standard rpart methods. (This change was necessary for the extra

argument.) So here we look at a different approach which is in fact often easier. We pass our labeling function
to prp using the node.fun argument. The example below displays the deviance at each node (Figure 8):

node.fun1 <- function(x, labs, digits, varlen)

{

paste("dev", x$frame$dev)

}

prp(tree, node.fun = node.fun1)

13



sex = mal

age >= 9.5

sibsp >= 3dev 136

dev 1 dev 3

dev 127

yes no

Figure 8: Printing text at the nodes with
node.fun.

sex = mal

age >= 9.5

sibsp >= 3
died

0.17 

dev 136

died

0.05 

dev 1

survived

0.89 

dev 3

survived

0.73 

dev 127

yes no

Figure 9: Adding extra text to the node
labels with node.fun.

sex = mal

age >= 9.5

sibsp >= 3

dev 136

dev 1 dev 3

dev 127

died

0.17 

died

0.05 

survived

0.89 

survived

0.73 

yes no

Figure 10: Same as Figure 9, but with
double newlines \n\n in the labels to move
text below the boxes.

or, more concisely:

prp(tree, node.fun = function(x, labs, digits, varlen) paste("dev", x$frame$dev))

The labeling function should return a vector of label strings, with labels corresponding to rows in x$frame.
The function must have all the arguments shown in the examples, even if it does not use them. Apart
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from labs, these arguments are copies of those passed to prp. The labs argument is a vector of the labels
generated by prp in the usual manner. This argument is useful if we want to include those labels but add
text of our own. As an example, we modify the function above to include the text prp usually prints at the
node (Figure 9):

node.fun2 <- function(x, labs, digits, varlen)

{

paste(labs, "\ndev", x$frame$dev)

}

prp(tree, extra = 6, node.fun = node.fun2)

Text after a double newline in the labels is drawn below the box. So to put the deviances below the box,
change \n to \n\n (Figure 10):

node.fun3 <- function(x, labs, digits, varlen)

{

paste(labs, "\n\ndev", x$frame$dev)

}

prp(tree, extra = 6, node.fun = node.fun3)

We used a class model in the above examples, but the same approach can of course be used with other
rpart methods.
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6.1 Customizing the split labels

In a similar manner, we can also generate custom split labels using prp’s split.fun argument.

Sometimes the standard split labels are very wide, especially when a variable has multiple factor levels.
Figure 11 is an example that wraps long split labels over multiple lines. The middle plot was produced by
the following code. The maximum length of each line is 15 characters. Change the 15 to suit your purposes.

tree <- rpart(Price/1000 ~ Mileage + Type + Country, cu.summary)

split.fun <- function(x, labs, digits, varlen, faclen)

{

# replace commas with spaces (needed for strwrap)

labs <- gsub(",", " ", labs)

for(i in 1:length(labs)) {

# split labs[i] into multiple lines

labs[i] <- paste(strwrap(labs[i], width = 15), collapse = "\n")

}

labs

}

prp(tree, split.fun = split.fun)

We can also reduce the amount of text with clip.facs = TRUE. This will remove the prefixes "Country ="

and "Type =" (Section 4.1 has examples.) Also bear in mind that we can use faclen to control how the
factors are abbreviated. All of these can be used together (right figure):

prp(tree, faclen = 0, clip.facs = TRUE, split.fun = split.fun)

Type = Cmp,Sml,Spr,Van

Country = Brz,Frn,Jpn,J/U,Kor,Mxc,USA

Type = Sml

Country = J/U,Mxc,USA

Country = Frn,Kor,USA

Type = Mdm

7.6

12

15

22

18

21

28

yes no
Type = Cmp Sml

Spr Van

Country = Brz

Frn Jpn J/U

Kor Mxc USA

Type = Sml

Country = J/U

Mxc USA

Country = Frn

Kor USA

Type = Mdm

7.6

12 15

22

18 21

28

yes no

Compact Small

Sporty Van

Brazil France

Japan

Japan/USA

Korea Mexico

USA

Small

Japan/USA

Mexico USA

France Korea

USA

Medium

7.6

12 15

22

18 21

28

yes no

Figure 11: Default Long labels split with a split.fun Various arguments, see code above
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Note that we can generate labels of the form

"is pclass 2nd or 3rd?"

using

split.prefix = "is ", split.suffix = "?", eq = " ", facsep = " or ".

The graph can sometimes look better if we add a new line to the split label, so for example

Country = Frn,Kor,USA

becomes narrower:

Country:

Frn,Kor,USA
.

Figure 12 demonstrates this technique. It was produced by the following code:

tree <- rpart(Price/1000 ~ Mileage + Type + Country, cu.summary)

split.fun <- function(x, labs, digits, varlen, faclen)

{

gsub(" = ", ":\n", labs)

}

prp(tree, extra = 100, under = T, yesno = F, split.fun = split.fun)

Type:
Cmp,Sml,Spr,Van

Country:
Brz,Frn,Jpn,J/U,Kor,Mxc,USA

Type:
Sml

Country:
J/U,Mxc,USA

Country:
Frn,Kor,USA

Type:
Mdm

18%

25% 16%

9%

15% 6%

10%

7.6

12 15

22

18 21

28

Figure 12: Inserting a newline into the split labels with split.fun.
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7 Examples using the color and palette arguments

This first part of this chapter describes the box.palette argument (introduced in version 2.0.0 of the
rpart.plot package, June 2016).

The second part describes the col and related arguments, which are a more flexible way of controlling colors,
although significantly more complicated to use.

7.1 The box.palette argument

The box.palette argument is generally the easiest way to add color to a plot. The color of each node box
is chosen from the vector of colors in box.palette: small fitted values are displayed with colors at the start
of the vector; large values with colors at the end.

7.1.1 box.palette = "auto"

With box.palette = "auto", a palette is chosen automatically (the choice is determined by the model’s re-
sponse type). This is the default for the rpart.plot function (whereas the default for prp is box.palette = 0,
no color).

The following table shows how extra and box.palette are chosen automatically when specified as "auto".
Figure 1 on page 3 gives some examples.

model response auto extra auto box.palette

continuous 100 "Blues"

two class (binary) 106 "BuGn"

three class 104 list("Reds", "Grays", "Greens")

four class 104 list("Reds", "Oranges", "Grays", "Greens")

five class 104 list("Reds", "Oranges", "Grays", "Blues", "Greens")

etc.

The predefined palettes (like "Blues") begin with an upper case letter to disambiguate them from the stan-
dard colors like "blue" (since partial matching is supported). Predefined palette are converted internally into
vectors of colors. The palettes use the ColorBrewer palettes [1] as a starting point, with some interpolation
to bring the number of colors per palette to nine.

The “bifurcated” palettes (like "BuGn") are useful for binary responses.

Fitted values of NA are displayed in cross-hatched white boxes, ignoring box.palette.

7.1.2 box.palette with a binary response (class model)

Here are some examples for a model with a binary response (next page).
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"auto"

sex = mal

age >= 9.5

sibsp >= 3
died

0.17

died

0.05

survived

0.89

survived

0.73

yes no

c("pink", "palegreen3")

sex = mal

age >= 9.5

sibsp >= 3
died

0.17

died

0.05

survived

0.89

survived

0.73

yes no

"Blues"

sex = mal

age >= 9.5

sibsp >= 3
died

0.17

died

0.05

survived

0.89

survived

0.73

yes no

"−Blues"

sex = mal

age >= 9.5

sibsp >= 3
died

0.17

died

0.05

survived

0.89

survived

0.73

yes no

Figure 13: The box.palette argument with a binary model.

The code is (Figure13):

data(ptitanic)

tree <- rpart(survived ~ ., data = ptitanic, cp = .02)

prp(tree, extra = 6, box.palette = "auto") # left plot, "auto" becomes "BuGn"

prp(tree, extra = 6, box.palette = c("pink", "palegreen3")) # left mid plot

prp(tree, extra = 6, box.palette = "Blues") # right mid plot, predefined palette

prp(tree, extra = 6, box.palette = "-Blues") # right plot

Notice that in the last graph we reverse the order of the colors by prefixing the palette name with "-". The
same technique can also be used with "auto", i.e. box.palette = "-auto" is supported.

7.1.3 box.palette with a model with a continuous response (anova model)

Here are some examples for a model with a continuous response (Figure14):

data(cu.summary)

tree <- rpart(Mileage ~ ., data = cu.summary)

prp(tree, box.palette = "auto") # left plot, "auto" becomes "Blues"

prp(tree, box.palette = c("pink", "palegreen3")) # left mid plot

prp(tree, box.palette = "RdYlGn") # right mid plot, predefined palette

prp(tree, box.palette = "-RdYlGn") # right plot

"auto"

Price >= 9447

Type = Lrg,Mdm,Van

Type = Lrg,Van

Price >= 11e+3

19

22

24

25

32

yes no

c("pink", "palegreen3")

Price >= 9447

Type = Lrg,Mdm,Van

Type = Lrg,Van

Price >= 11e+3

19

22

24

25

32

yes no

"RdYlGn"

Price >= 9447

Type = Lrg,Mdm,Van

Type = Lrg,Van

Price >= 11e+3

19

22

24

25

32

yes no

"−RdYlGn"

Price >= 9447

Type = Lrg,Mdm,Van

Type = Lrg,Van

Price >= 11e+3

19

22

24

25

32

yes no

Figure 14: The box.palette argument with a continuous response.
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7.2 The col and related arguments

This section describes the col argument, which is a more flexible way of controlling colors than box.palette,
although more complicated to use.

Arguments like col and lty are recycled and can be vectors, indexed on the row number in the tree’s frame.
Thus the call prp(tree, split.col = c("red", "blue")) would allocate red to the node in first row of
frame, blue to the second row, red to the third row, and so on. But that is not very useful, because
splits and leaves appear in “random” order in frame, as can be seen in the example below. Note the node
numbers along the left margin (we could plot those node numbers with nn = TRUE and their row indices with
ni = TRUE):

> tree$frame

var n wt dev yval complexity ncompete nsurrogate yval2.1 yval2.2 yval2.3 yval2.4 yval2.5

1 sex 1309 1309 500 1 0.424 4 1 1.000 809.000 500.000 0.618 0.382

2 age 843 843 161 1 0.021 3 1 1.000 682.000 161.000 0.809 0.191

4 <leaf> 796 796 136 1 0.000 0 0 1.000 660.000 136.000 0.829 0.171

5 sibsp 47 47 22 2 0.021 3 2 2.000 22.000 25.000 0.468 0.532

10 <leaf> 20 20 1 1 0.020 0 0 1.000 19.000 1.000 0.950 0.050

11 <leaf> 27 27 3 2 0.020 0 0 2.000 3.000 24.000 0.111 0.889

3 <leaf> 466 466 127 2 0.015 0 0 2.000 127.000 339.000 0.273 0.727

Here’s something more useful (Figure 15). We use the fitted value at a node (the yval field in frame) to
determine the color of the node:

data(ptitanic)

tree <- rpart(survived ~ ., data = ptitanic, cp = .02)

prp(tree, extra = 6,

box.col = c("pink", "palegreen3")[tree$frame$yval])

sex = mal

age >= 9.5

sibsp >= 3
died

0.17

died

0.05

survived

0.89

survived

0.73

yes no

Figure 15: Using the fitted value and the box.col argument to determine the color of the boxes.
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Figure 16 is a similar example for a tree with a continuous response (a.k.a a regression or anova tree). This
example is based on code kindly supplied by Josh Browning:

heat.tree <- function(tree, low.is.green = FALSE, ...) { # dots args passed to prp

y <- tree$frame$yval

if(low.is.green)

y <- -y

max <- max(y)

min <- min(y)

cols <- rainbow(99, end = .36)[

ifelse(y > y[1], (y-y[1]) * (99-50) / (max-y[1]) + 50,

(y-min) * (50-1) / (y[1]-min) + 1)]

prp(tree, branch.col = cols, box.col = cols, ...)

}

data(ptitanic)

tree <- rpart(age ~ ., data = ptitanic)

heat.tree(tree, type = 4, varlen = 0, faclen = 0, fallen.leaves = TRUE)

pclass = 2nd,3rd

parch >= 1

parch < 3

sibsp >= 2

survived = survived

sex = male

pclass = 3rd

parch >= 2

1st

 < 1

 >= 3

 < 2

died

female

2nd

 < 2

30

26

19

17

9.6

20

17

7.1 21 26 37

29

27 32

39

28 41

Figure 16: Using the fitted value and the box.col argument to determine the color of regression nodes.
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The effect of the example on the previous page can be achieved more simply with the box.palette argument
(Figure 17):

data(ptitanic)

tree <- rpart(age ~ ., data = ptitanic)

rpart.plot(tree, type = 4, extra = 0, branch.lty = 3, box.palette = "RdYlGn")

(The colors are paler than in the previous example. This is so the text in the node boxes can be read more
easily.)

pclass = 2nd,3rd

parch >= 1

parch < 3

sibsp >= 2

survived = survived

sex = male

pclass = 3rd

parch >= 2

1st

 < 1

 >= 3

 < 2

died

female

2nd

 < 2

30

26

19

17

9.6

20

17

7.1 21 26 37

29

27 32

39

28 41

Figure 17: Using the fitted value and the box.palette argument to determine the color of regression nodes.
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The following code creates a series of images – a movie – which shows how the tree is pruned on node
complexity. Figure 18 is one of the plots produced by this code.

complexities <- sort(unique(tree$frame$complexity)) # a vector of complexity values

for(complexity in complexities) {

cols <- ifelse(tree$frame$complexity >= complexity, 1, "gray")

dev.hold() # hold screen output to prevent flashing

prp(tree, col = cols, branch.col = cols, split.col = cols)

dev.flush()

Sys.sleep(1) # pause for one second

}

Figure 18: Using the color arguments to indicate a nodes’s complexity.
Nodes with a complexity greater than a certain value (0.021) are grayed out in this example.
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The following code shows how a tree is constructed in depth-first fashion, node by node (Figure 19):

tree1 <- rpart(survived ~ ., data = ptitanic)

par(mfrow = c(4,3))

for(iframe in 1:nrow(tree1$frame)) {

cols <- ifelse(1:nrow(tree1$frame) <= iframe, "black", "gray")

prp(tree1, col = cols, branch.col = cols, split.col = cols)

}

1

sex = mal

age >= 9.5

sib >= 3

pcl = 3rd

sib >= 3die

die sur die sur

sur

2

sex = mal

age >= 9.5

sib >= 3

pcl = 3rd

sib >= 3die

die sur die sur

sur

3

sex = mal

age >= 9.5

sib >= 3

pcl = 3rd

sib >= 3die

die sur die sur

sur

4

sex = mal

age >= 9.5

sib >= 3

pcl = 3rd

sib >= 3die

die sur die sur

sur

5

sex = mal

age >= 9.5

sib >= 3

pcl = 3rd

sib >= 3die

die sur die sur

sur

6

sex = mal

age >= 9.5

sib >= 3

pcl = 3rd

sib >= 3die

die sur die sur

sur
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sib >= 3

pcl = 3rd

sib >= 3die

die sur die sur

sur
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sib >= 3

pcl = 3rd

sib >= 3die

die sur die sur

sur

9

sex = mal

age >= 9.5

sib >= 3

pcl = 3rd

sib >= 3die

die sur die sur

sur

10

sex = mal

age >= 9.5

sib >= 3

pcl = 3rd

sib >= 3die

die sur die sur

sur

11

sex = mal

age >= 9.5

sib >= 3

pcl = 3rd

sib >= 3die

die sur die sur

sur

Figure 19: Depth first tree construction.
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The following code highlights a node and all its ancestors (Figure 20):

# return the given node and all its ancestors (a vector of node numbers)

path.to.root <- function(node)

{

if(node == 1) # root?

node

else # recurse, %/% 2 gives the parent of node

c(node, path.to.root(node %/% 2))

}

node <- 11 # 11 is our chosen node, arbitrary for this example

nodes <- as.numeric(row.names(tree$frame))

cols <- ifelse(nodes %in% path.to.root(node), "sienna", "gray")

prp(tree, nn = TRUE,

col = cols, branch.col = cols, split.col = cols, nn.col = cols)

sex = mal

age >= 9.5

sibsp >= 3died

died survived

survived

1

2

4 5

10 11

3

Figure 20: Node 11 and its ancestors are highlighted.
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7.3 Working with rpart model code: some hints

Here are some code fragments demonstrating additional techniques for manipulating rpart models. It is
worthwhile coming to grips with frame – look at print(tree$frame) and print.default(tree). Sometimes
we with work with node numbers and sometimes it is necessary to work with row numbers in frame:

nodes <- as.numeric(row.names(tree$frame)) # node numbers in the order they appear in frame

node %/% 2 # parent of node

c(node * 2, node * 2 + 1) # left and right child of node

inode <- match(node, nodes) # row index of node in frame

is.leaf <- tree$frame$var == "<leaf>" # logical vec, indexed on row in frame

nodes[is.leaf] # the leaf node numbers

is.left <- nodes %% 2 == 0 # logical vec, indexed on row in frame

ifelse(is.left, nodes+1, nodes-1) # siblings

get.children <- function(node) # node and all its children

if(is.leaf[match(node, nodes)]) {

node

} else

c(node,

get.children(2 * node), # left child

get.children(2 * node + 1)) # right child
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8 Branch widths

It can be informative to have branch widths proportional to the number of observations. In the example on
the right side of Figure 21, the small number of observations at the bottom split is immediately obvious. We
can also estimate the relative number of males and females from the widths at the root split.

The right side of the figure was generated with:

prp(tree, branch.type = 5, yesno = FALSE, faclen = 0)

Note the branch.type argument. Other values of branch.type can be used to get widths proportional to
the node’s deviance, complexity, and so on. See the prp help page for details.

But be aware that the human eye is not good at estimating widths of branches at an angle. In Figure 22 the
left branch has the same width as the right branch, although one could be forgiven for thinking otherwise.
Width here should be measured horizontally, but the eye refuses to do that. The illusion is triggered by
the different slopes in this extreme example (whereas in a plotted tree the left and right branches at a split
usually have similar slopes and the illusion is irrelevant).

sex = male

age >= 9.5

sibsp >= 3
61%

2% 2%

36%

died

died survived

survived

sex = male

age >= 9.5

sibsp >= 3died

died survived

survived

Figure 21: left The percentage of observations in a node.
right That information represented by the width of the branches.

Figure 22: Misleading branch widths. The two branches have the same width, measured horizontally.
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9 Trimming a tree with the mouse

Set snip = TRUE to display a tree and interactively trim it with the mouse.

If we click on a split it will be marked as deleted. If we click on an already-deleted split it will be undeleted
(if its parent is not deleted). Information on the node is printed as we click.

When we have finished trimming, click on the QUIT button or right click, and prp will return the trimmed
tree (in the obj field). Example (Figure 23):

data(ptitanic)

tree <- rpart(survived ~ ., data = ptitanic, cp = .012)

new.tree <- prp(tree, snip = TRUE)$obj # interactively trim the tree

prp(new.tree) # display the new tree

You might like to prefix the above code with par(mfrow = c(1,2)) to display the original and trimmed
trees side by side.

Additionally, we can use the snip.fun argument to specify a function to be invoked after each mouse click.
The following example prints the trimmed tree’s performance after each click – using this technique we can
manually select a desired performance-complexity trade-off.

data(ptitanic)

tree <- rpart(survived ~ ., data = ptitanic)

my.snip.fun <- function(tree) { # tree is the trimmed tree

# should really use indep test data here

cat("fraction predicted correctly: ",

sum(predict(tree, type = "class") == ptitanic$survived) /

length(ptitanic$survived),

"\n")

}

prp(tree, snip = TRUE, snip.fun = my.snip.fun)

Figure 23: Interactively trimming a
tree with snip = TRUE.

28



10 Using plotmo in conjunction with prp

Another useful graphical technique is to plot the model’s response while changing the values of the predictors.
Figure 24 illustrates this on the kyphosis data:

library(rpart.plot)

tree <- rpart(Kyphosis ~ ., data = kyphosis)

prp(tree, extra = 7) # left graph

library(plotmo)

plotmo(tree, type = "prob", nresponse = "present") # middle graph

# type = "prob" is passed to predict()

plotmo(tree, type = "prob", nresponse = "present", # right graph

type2 = "image", ngrid2 = 200, # type2 = "image" for an image plot

pt.col = ifelse(kyphosis$Kyphosis == "present", "red", "lightblue"))

The above code uses plotmo [4] to plot the regression surfaces. The figure actually shows just a subset of
the plots produced by the calls to plotmo, with some adjustments for printing.

Note how each “cliff” in the middle graph corresponds to a split in the tree. (The slight slope of the cliffs is
an artifact of the persp plot – the cliffs should be vertical.)

The type = "prob" argument is passed internally in plotmo to predict.rpart, which returns a two column
response, and the nresponse = "present" argument selects the second column. In other words, we are
plotting the predicted probability of kyphosis after surgery. We could instead plot the predicted class by
using type = "class".

Figure 24: The same tree represented in three different ways. The middle and right graphs show the predicted
probability as a function of the predictors. The right graph is an aerial view of the middle graph.
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Figure 25: A tree built from the ozone data, and regression surfaces for the predictors at the upper splits.

Only two predictors were used in the kyphosis tree. More complex models with many predictors can be
viewed in a piecemeal fashion by looking at the action of one or two predictors at a time. For example,
Figure 25 shows a tree built from the ozone data:

library(earth) # build a tree with the ozone1 data

data(ozone1)

tree <- rpart(O3 ~ ., data = ozone1)

prp(tree, main = "ozone level") # left graph

plotmo(tree) # middle and right graphs

The model predicts the ozone level, or air pollution, as a function of several variables: Also shown are
regression surfaces for the variables in the upper splits. (Once again, as in the previous figure, this figure
actually shows just a subset of the plots produced by the call to plotmo.)

The plotmo graphs are created by varying two variables while holding all others at their median values. Thus
the graphs show only a thin slice of the data, but are nonetheless helpful. They are most informative when
the variables being plotted do not have strong interactions with the other variables. The plotmo vignette
has further discussion and examples.
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Figure 26: Surfaces for other models using the ozone data. Compare to the right graph of Figure 25.
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It is interesting to compare the rpart tree to other models (Figure 26). The linear model gives a flat sur-
face. MARS [5] generates a surface by combining hinge functions (see http://en.wikipedia.org/wiki/

Multivariate_adaptive_regression_splines). The random forest [3] smooths out the surface by averag-
ing lots of trees.

There are a large number of possible variable pairs (from the 9 predictors in the ozone data we can form
9 × 8/2 = 36 pairs). The options to plotmo in the code below select just the pair displayed, and use
persp.theta to force the same orientation on all persp plots. See the plotmo help page for details. The
code is:

a <- lm(O3 ~ ., data = ozone1) # left graph, linear model

plotmo(a, degree1 = NA, degree2 = c("temp", "ibh"), persp.theta = -35)

library(earth) # earth is an implementation of MARS (MARS is a trademarked term)

a <- earth(O3 ~ ., data = ozone1, degree = 2) # middle graph, MARS

plotmo(a, degree1 = NA, degree2 = c("temp", "ibh"), persp.theta = -35)

library(randomForest)

a <- randomForest(O3 ~ ., data = ozone1) # right graph, random forest

plotmo(a, degree1 = NA, degree2 = c("temp", "ibh"), persp.theta = -35)
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11 Compatibility with plot.rpart and text.rpart

Here’s how to get prp to behave like plot.rpart:

• Instead of all = TRUE, use type = 1 (type supersedes all and fancy, and provides more options).

• Instead of fancy = TRUE, use type = 4.

• Instead of use.n = TRUE, use extra = 1 (extra supersedes use.n and provides more options).

• Instead of pretty = 0, use faclen = 0 (faclen supersedes pretty).

• Instead of fwidth and fheight, use round and leaf.round to change the roundness of the node boxes,
and space and yspace to change the box space around the label. But those arguments are not really
equivalent. For square leaf-boxes use leaf.round = 0.

• Instead of margin, use Margin (the name was changed to prevent partial matching with mar).

• Use border.col = 0 to not draw boxes around the nodes.

• The post.rpart function may be approximated with:

postscript(file = "tree.ps", horizontal = TRUE)

prp(tree, type = 4, extra = 1, clip.right.labs = FALSE, leaf.round = 0)

dev.off()

• plot.rparts’s default value for uniform is FALSE; prp’s is TRUE (because with uniform = FALSE and
extra > 0 the plot often requires too small a text size).

• plot.rparts’s default value for branch is 1; prp’s is 0.2 (because after applying compress and
ycompress that arguably looks better).

• xpd = TRUE is often necessary with plot.rpart but is unneeded with prp. (See par’s help page for
information on xpd.)

Ideally prp’s arguments should be totally compatible with plot.rpart. I hope you will agree that the above
discrepancies are in some sense necessary, given the approach taken by prp.

11.1 An example: reproducing the plot produced by example(rpart)

The following code draws the first graph from example(rpart) and then draws a graph in the same style
with prp:

fit <- rpart(Kyphosis ~ Age + Number + Start, data = kyphosis) # from example(rpart)

par(mfrow = c(1,2), xpd = NA) # side by side comparison

plot(fit)

text(fit, use.n = TRUE)

prp(fit, extra = 1, uniform = F, branch = 1, yesno = F, border.col = 0, xsep = "/")
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12 The graph layout algorithm

For the curious, this section is an overview of the algorithm used by prp to lay out the graph. The current
implementation is not perfect but suffices for most trees. The more-or-less standard approach for positioning
labels, simulated annealing, is not used because an objective function cannot (easily) be calculated efficiently.
A central issue is a chicken-and-egg problem: we need the cex to determine the best positions for the labels
but we need the positions to determine the cex.

Initially, prp calculates the tentative positions of the nodes. If compress = TRUE (the default), it slides
nodes horizontally into available space where possible. It uses the same code as plot.rpart to do all this,
with a little extension for fallen.leaves. Figure 27 shows the same tree plotted with different settings of
the compress and ycompress arguments (we will get to ycompress in a moment). In the middle plot see
how age >= 17 has been shifted left, for example.

If cex = NULL (meaning calculate a suitable cex automatically, the default), prp then calculates the cex

needed to display the labels and their boxes with at least gap and ygap between the boxes. (Whether the
boxes are invisible or not is immaterial to the graph layout algorithm.) This is accomplished with a binary
search for the appropriate cex. A search is necessary because:

(a) It is virtually impossible to calculate the required scale analytically taking into account the many pa-
rameters such as adj, yshift, and space. For example, sometimes a smaller cex causes more overlapping
as boxes shift around with the scale change.

(b) Font sizes are discrete, so the font size we get may not be the font size we asked for. This is especially
a problem with a small cex where there is a large relative jump between the type size and the next smaller
size.

Note that prp will only decrease the cex; it never increases the cex above 1 (but that can be changed with
max.auto.cex).

If the initial cex is less than 0.7 (actually ycompress.cex), prp then tries to make additional space as follows
(assuming ycompress = TRUE, the default). If type = 0, 1, or 2, it shifts alternate nodes vertically, looking
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Figure 27: The compress and ycompress arguments
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xcompact=FALSE
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xcompact=TRUE
ycompact=TRUE
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Figure 28: Small trees are compacted by default, as shown on the right.

for the shift in shift.amounts that allows the biggest type size. If type = 3 or 4 it tries alternating the
leaves if fallen.leaves = TRUE.

The shift is retained only if makes possible a type size gain of at least 10% (actually accept.cex). The
shifted tree is not as “tidy” as the original tree, but the larger text is usually worth the untidiness (but not
always). Compare the middle and right plots in Figure 27.

Finally, for small trees where there is too much white space, prp compacts the tree horizontally and/or
vertically by changing xlim and ylim (Figure 28). This can be disabled with the xcompact and ycompact

arguments.

Arguably the most serious limitation of the current implementation is its inability to display results on test
data (on the tree derived from the training data).
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Appendix: mvpart mrt models

Note: In December 2014 the mvpart package was removed from CRAN.

The extra argument of prp has a special meaning for mvpart mrt models [2], as shown in the figure below.
(Internally, mvpart sets the method field of the tree to "mrt", and prp recognizes that.) As always we can
print percentages by adding 100 to extra. The type and other arguments work in the usual way.

Example:

library(rpart.plot)

library(mvpart)

data(spider)

set.seed(10)

response <- data.matrix(spider[,1:3, drop = F])

tree <- mvpart(response~herbs+reft+moss+sand+twigs+water, data = spider,

method = "mrt", xv = "min")

prp(tree, type = 1, extra = 111, under = TRUE)
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Figure 29: The extra argument with an mrt model.
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