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Abstract. We make some simple extensions to the Active Shape Model
of Cootes et al. [4], and use it to locate features in frontal views of
upright faces. We show on independent test data that with the extensions
the Active Shape Model compares favorably with more sophisticated
methods. The extensions are (i) fitting more landmarks than are actually
needed (ii) selectively using two- instead of one-dimensional landmark
templates (iii) adding noise to the training set (iv) relaxing the shape
model where advantageous (v) trimming covariance matrices by setting
most entries to zero, and (vi) stacking two Active Shape Models in series.

1 Introduction

Automatic and accurate location of facial features is difficult. The variety of
human faces, expressions, facial hair, glasses, poses, and lighting contribute to
the complexity of the problem.

This paper focuses on the specific application of locating features in unob-
structed frontal views of upright faces. We make some extensions to the Active
Shape Model (ASM) of Cootes et al. [4] and show that it can perform well in
this application.

Fig. 1. A face with correctly positioned landmarks. This image is from the BiolD
set [15].
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2 Active Shape Models

This section describes Active Shape Models [8].

A landmark represents a distinguishable point present in most of the images
under consideration, for example, the location of the left eye pupil (Fig. 1). We
locate facial features by locating landmarks.

A set of landmarks forms a shape. Shapes are represented as vectors: all the
x- followed by all the y-coordinates of the points in the shape. We align one
shape to another with a similarity transform (allowing translation, scaling, and
rotation) that minimizes the average euclidean distance between shape points.
The mean shape is the mean of the aligned training shapes (which in our case
are manually landmarked faces).

The ASM starts the search for landmarks from the mean shape aligned to
the position and size of the face determined by a global face detector. It then
repeats the following two steps until convergence (i) suggest a tentative shape by
adjusting the locations of shape points by template matching of the image tex-
ture around each point (ii) conform the tentative shape to a global shape model.
The individual template matches are unreliable and the shape model pools the
results of the weak template matchers to form a stronger overall classifier. The
entire search is repeated at each level in an image pyramid, from coarse to fine
resolution.

It follows that two types of submodel make up the ASM: the profile model
and the shape model.

The profile models (one for each landmark at each pyramid level) are
used to locate the approximate position of each landmark by template matching.
Any template matcher can be used, but the classical ASM forms a fixed-length
normalized gradient vector (called the profile) by sampling the image along a
line (called the whisker) orthogonal to the shape boundary at the landmark.
During training on manually landmarked faces, at each landmark we calculate
the mean profile vector g and the profile covariance matrix Sg. During searching,
we displace the landmark along the whisker to the pixel whose profile g has lowest
Mahalanobis distance from the mean profile g:

MahalanobisDistance = (g — g)TS; " (g — &). (1)

The shape model specifies allowable constellations of landmarks. It gener-
ates a shape X with
X=x+®b (2)

where X is the mean shape, b is a parameter vector, and ® is a matrix of
selected eigenvectors of the covariance matrix Sg of the points of the aligned
training shapes. Using a standard principal components approach, we model as
much variation in the training set as we want by ordering the eigenvalues \; of
S; and keeping an appropriate number of the corresponding eigenvectors in ®.
We use a single shape model for the entire ASM but scale it for each pyramid
level.
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We can generate various shapes with Equation 2 by varying the vector pa-
rameter b. By keeping the elements of b within limits (determined during model
building) we ensure that generated face shapes are lifelike.

Conversely, given a suggested shape x, we can calculate the parameter b
that allows Equation 2 to best approximate x with a model shape X. Cootes and
Taylor [8] describe an iterative algorithm that gives the b and T that minimizes

distance(x, T(X + ®b)) (3)

where T is a similarity transform that maps the model space into the image
space.

3 Related Work

Active Shape Models belong to the class of models which after a shape is situated
near an image feature interact with the image to warp the shape to the feature.
They are deformable models likes snakes [16], but unlike snakes they use an
explicit shape model to place global constraints on the generated shape. ASMs
were first presented by Cootes et al. [3]. Cootes and his colleagues followed with
a succession of papers cumulating in the classical ASM described above [8] [4].

Many modifications to the classical ASM have been proposed. We mention
just a few. Cootes and Taylor [6] employ a shape model which is a mixture of mul-
tivariate gaussians, rather than assuming that the shapes come from the single
gaussian distribution implicit in the shape model of the classical ASM. Romdhani
et al. [22] use Kernel Principal Components Analysis [23] and a Support Vector
Machine. Their software trains on 2D images, but models non-linear changes to
face shapes as they are rotated in 3D. Rogers and Graham [21] robustify ASMs
by applying robust least-squares techniques to minimize the residuals between
the model shape and the suggested shape. Van Ginneken et al. [12] take the tack
of replacing the 1D normalized first derivative profiles of the classical ASM with
local texture descriptors calculated from “locally orderless images” [17]. Their
method automatically selects the optimum set of descriptors. They also replace
the classical ASM profile model search (using Mahalanobis distances) with a k-
nearest-neighbors classifier. Zhou et al. [25] estimate shape and pose parameters
using Bayesian inference after projecting the shapes into a tangent space. Li and
Ito [24] build texture models with AdaBoosted histogram classifiers. The Active
Appearance Model [5] merges the shape and profile model of the ASM into a
single model of appearance, and itself has many descendants. Cootes et al. [7]
report that landmark localization accuracy is better on the whole for ASMs than
AAMs, although this may have changed with subsequent developments to the
AAM.

4 Extensions to the ASM

We now look at some extensions to the classical ASM. Figure 3 (Sec. 5.1) shows
the increase in performance for each of these extensions.
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Fig. 2. Mean error versus number of landmarks.

4.1 Number of Landmarks

A straightforward way to improve the mean fit is to increase the number of
landmarks in the model (Fig. 2). Fitting a landmark tends to help fitting other
landmarks, so results are improved by fitting more landmarks than are actually
needed. Search time increases roughly linearly with the number of landmarks.

Fig. 2 was constructed as follows from the XM2VTS [19] set of manually
landmarked faces. For a given number (from 3 to 68) of landmarks, that number
of landmarks was chosen randomly from the 68 in the XM2VTS test. With the
chosen landmarks, a model was built and tested to give one gray dot. This was
repeated ten times for each number of landmarks. The black line shows the mean
error for each number of landmarks.

4.2 Two Dimensional Profiles

The classical ASM uses a one-dimensional profile at each landmark, but using
two-dimensional “profiles” can give improved fits. Instead of sampling a one-
dimensional line of pixels along the whisker, we sample a square region around
the landmark. Intuitively, a 2D profile area captures more information around
the landmark and this information if used wisely should give better results.
During search we displace the sampling region in both the “x” and “y” direc-
tions, where x is orthogonal to the shape edge at the landmark and y is tangent
to the shape edge. We must rely on the face being approximately upright because
2D profiles are aligned to the edges of the image. The profile covariance matrix
Sg of a set of 2D profiles is formed by treating each 2D profile matrix as a long
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vector (by appending the rows end to end), and calculating the covariance of the
vectors.

Any two dimensional template matching scheme can be used, but the au-
thors found that good results were obtained using gradients over a 13x13 square
around the landmark, after prescaling faces to a constant width of 180 pixels.
The values 13 and 180 were determined during model building by measurements
on a validation set, as were all parameter values in this paper (Sec. 5).

Gradients were calculated with a 3x3 convolution mask ((0,0,0),(0,-2,1),(0,1,0))
and normalized by dividing by the Frobenius norm of the gradient matrix. The
effect of outliers was reduced by applying a mild sigmoid transform to the ele-
ments x; of the gradient matrix: a} = x;/(abs(x;) + constant).

Good results were obtained using 2D profiles for the nose and eyes and sur-
rounding landmarks, with 1D profiles elsewhere.

4.3 Adding Noise During Training

The XM2VTS set used for training (Sec. 5) contains frontal images of mostly
caucasian working adults and is thus a rather limited representation of the variety
of human faces. A shape model built with noise added to the training shapes
helps the trained model generalize to a wider variety of faces. Good results can
be obtained with the following techniques:

1. Add gaussian noise with a standard deviation of 0.75 pixels to the x- and y-
positions of each training shape landmark. In effect, this increases variability
in the training set face shapes.

2. Randomly choose the left or the right side each face. Generate a stretching
factor € for each face from a gaussian distribution with a standard deviation
of 0.08. Stretch or contract the chosen side of the face by multiplying the x
position (relative to the face center) of each landmark on that side by 1+ e.
This is roughly equivalent to rotating the face slightly.

4.4 Loosening Up the Shape Model

In Equation 2, the constraints on the generated face shape are determined by the
number of eigenvectors 745 in ® and the maximum allowed values of elements
in the parameter vector b. When conforming the shape suggested by the profile
models to the shape model, we clip each element b; of b t0 byeev/As Where A; is
the corresponding eigenvalue The parameters neiqs and by,q, are global constants
determined during model building by parameter selection on a validation set.
See [8] for details.

The profile models are most unreliable when starting the search (for exam-
ple, a jaw landmark can snag on the collar), but become more reliable as the
search progresses. We can take advantage of this increase in reliability with two
modifications to the standard ASM procedure described above. The first mod-
ification sets neigs and bpqq for the final pyramid level (at the original image
scale) to larger values. The second sets ne;gs and by,q, for the final iteration at
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each pyramid level to larger values. In both cases the landmarks at that stage of
the search tend to be already positioned fairly accurately, for the given pyramid
level. It is therefore less likely that the profile match at any landmark is grossly
mispositioned, allowing the shape constraints to be weakened.

These modifications are effective for 2D but not for 1D profiles. The 1D profile
matches are not reliable enough to allow the shape constraints to be weakened.

4.5 Trimming the Profile Covariance Matrices

For 2D profiles, calculation of the Mahalanobis distances dominates the overall
search time. We can reduce this time (with little or no effect on landmark location
accuracy) by “trimming” the covariance matrix

The covariance between two pixels in a profile tends to be much higher for
pixels that are closer together. This means that we can ignore covariances for
pixels that are more than 3 pixels apart, or equivalently clear them to 0. Clear-
ing elements of a covariance matrix may result in a matrix that is no longer
positive definite (which is necessary for a meaningful Mahalanobis distance cal-
culation in Equation 1). We therefore adjust the trimmed matrix to a “nearby”
positive definite matrix. This can be done by iterating the following procedure a
few times: perform a spectral decomposition of the trimmed covariance matrix
A = QAQT, set zero or negative eigenvalues in A to a small positive number,
reconstruct the matrix from the modified A, and re-trim. A suitable “small posi-
tive number” is iter_nbr x abs(min(eig-vals(A))). More rigorous ways of forcing
positive definiteness are presented in Gentle [11] and in Bates and Maechler [1].

Trimming the covariance matrices in conjunction with a sparse matrix mul-
tiplication routine roughly halves the overall search time.

4.6 Stacking Models

Accurate positioning of the start shape is crucial — it is unlikely that an ASM
search will recover completely from a bad start shape. One way of better posi-
tioning the start shape is to run two ASM searches in series, using the results
of the first search as the start shape for the second search. In practice is suffices
to use 1D profiles for the first model and to start the second model at pyramid
level 1, one level below full size. Stacking helps the worst fits, where the start
shape is often badly mis-positioned, but has little effect where the start shape
is already well positioned.

5 Experimental Results

Before giving experimental results we briefly review model assessment in more
general terms [13]. The overall strategy for selecting parameters is
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1. for each model parameter

2 for each parameter value

3 train on a set of faces

4. evaluate the model by using it to locate landmarks

5 select the value of the parameter that gives the best model
6. test the final model by using it to locate landmarks.

Two processes are going on here: model selection which estimates the perfor-
mance of different models in order to choose one (steps 2-5 above), and model
assessment which estimates the final model’s performance on new data (step 6
above). We want to measure the generalization ability of the model, not its abil-
ity on the set it was trained on, and therefore need three independent datasets
(i) a training set for step 3 above (ii) a parameter selection or validation set for
step 4 above, and (iii) a test set for step 6 above.

For the training set we used the XM2VTS [19] set. We effectively doubled
the size of the training set by mirroring images, but excluded faces that were of
poor quality (eyes closed, blurred, etc.).

For the validation set we used the AR [18] set. So, for example, we used the
AR set for choosing the amount of noise discussed in section 4.3. We minimized
overfitting to the validation set by using a different subset of the AR data for
selecting each parameter. Subsets consisted of 200 randomly chosen images.

For the test set we used the BioID set [15]. More precisely, the test set is
those faces in the BioID set that were successfully found by the OpenCV [14]
implementation of the Viola-Jones face detector (1455 faces, which is 95.7% of
the total 1521 BiolD faces).

We used manual landmarks for these three sets from the FGNET project [9].

Cross validation on a single data set is another popular approach. We did
not use cross validation because three datasets were available and because of the
many instances of near duplication of images within each dataset.

Following Cristinacce [10], we present results in terms of the mel7 measure.
The mel?7 is calculated by taking the mean of the euclidean distances between
each of the 17 internal face points located by the search and the corresponding
manually landmarked point. This mean is normalized by dividing by the distance
between the manually landmarked eye pupils. We use only 17 of the 20 manually
landmarked BioID points because the 3 points near the sides of the face have a
high variability across human landmarkers.

5.1 Relative Performance

Fig. 3 summarizes and compares results from applying each of the modifica-
tions described in this paper. Each graph point represents the mel7 averaged
over all faces in the test set, for the given model. Each model incorporates the
improvements of the models to its left but not to its right.

For example, the entry labeled 4.2 2D profiles shows results for the model
described in section 4.2. The model uses the 2D profiles described in that section
and incorporates the techniques prior to but not subsequent to section 4.2 The
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Fig. 3. Relative performance of various models.

graph shows that using 2D profiles decreases the mel7 from 0.061 to 0.055 but
increases the search time from 110 to 410 ms.

The mean mel7 of the final stacked model is 66% of the initial 20 point
model. The biggest single improvement comes from adding more points to the
model, followed by using 2D profiles, followed by stacking. A different test set or
different evaluation order would give somewhat different results, but the graph
is representative of the relative performance of the various modifications.

5.2 Comparison to Previously Published Results

Fig. 4 compares the best model in this paper, the stacked model (section 4.6), to
the Constrained Local Model presented in Cristinacce and Cootes [10]. Briefly,
the Constrained Local Model is similar to an Active Appearance Model [5], but
instead of modeling texture across the whole face it models a set of local feature
templates. During search, the feature templates are matched to the image using
an efficient shape constrained search. The model is more accurate and more
robust than the original Active Appearance Model.

The results in Cristinacce and Cootes’ paper appear to be the best previously
published facial landmark location results and are presented in terms of the mel7
on the Biold set, which makes a direct comparison possible. The dotted curve in
Fig. 4 reproduces the curve in Fig. 4(c) in their paper. The figure shows that the
stacked model on independent data outperforms the Constrained Local Model.
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Fig. 4. Comparison to Constrained Local Model [10]

The median mel7 for the stacked model is 0.045 (2.4 pixels), the best mel7
is 0.0235 (1.4 pixels), and the worst is 0.283 (14 pixels). The long right hand tail
of the error distribution is typical of ASMs.

6 Conclusion and Future Work

This paper presented some modifications to the Active Shape Model which make
it competitive with more sophisticated methods of locating features in frontal
views of upright faces.

A few simple rules of thumb for improving ASMs became apparent. You can
get better fits by adding more landmarks. You can discard most elements of the
covariance matrices for increased speed without loss of quality. You get better
results with a better start shape, and you can do this by running two models in
series.

The techniques used in this paper are fairly standard. Perhaps the main
contribution of the paper is assembling them together in a sound fashion. Ad-
vantages of the techniques are their simplicity and applicability for use in con-
junction with other methods. For example, extra landmarks and stacked models
would possibly improve the performance of the Constrained Local Model shown
in Fig. 4.

The results are still not as good as manual landmarks. Further work will
investigate combining multiple profiling techniques at each landmark with a de-
cision tree [2] or related method. Here the training process would try different
profiling techniques at each landmark and build a decision tree (for each land-
mark) that would select or combine techniques during searching.

Additional documentation and source code to reproduce the results in this
paper can be found at this project’s web site [20].
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