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Abstract

This thesis presents techniques for locating landmarks in images of human faces.

A modified Active Shape Model (ASM [21]) is introduced that uses a form of SIFT
descriptors [68]. Multivariate Adaptive Regression Splines (MARS [40]) are used to
efficiently match descriptors around landmarks. This modified ASM is fast and performs
well on frontal faces.

The model is then extended to also handle non-frontal faces. This is done by first
estimating the face’s pose, rotating the face upright, then applying one of three ASM
submodels specialized for frontal, left, or right three-quarter views. The multiview
model is shown to be effective on a variety of datasets.



To the memory of Carolyn.
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Chapter 1

Introduction

This thesis investigates methods for automatically finding landmarks in images of faces.
A landmark is a distinguishable point present in most of the images under consideration.
An example is the pupil of the left eye. Figure 1.1 shows a face with landmarks.

The overall intention is to introduce methods that perform well enough to be used
in real-world applications, with software that is straightforward, portable, and easily
maintainable. To this end, the methods investigated are essentially extensions to the
well known Active Shape Model (ASM) of Cootes and Taylor [23].

We look for improvements to the ASM because, like all current automatic landmarking
techniques, it’s sometimes inaccurate and sometimes fails completely. Figure 1.2 shows
the results of an ASM search that is only partially successful.

Figure 1.1: A face with 77
landmarks.

Face images in this document
are from the MUCT set [81],
except where noted.
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Figure 1.2:

Results of an unsatisfactory
ASM search.

Note the misplacement of mouth
and other landmarks.

1.1 New contributions

The main new contributions of this thesis are the integration of SIFT/HAT descriptors
into ASMs and the way the model is extended to handle non-frontal faces. This section
describes these contributions for readers already familiar with the field of automatic
landmarking. (All terms and technology mentioned below will be described in detail in
the body of the thesis.)

The first contribution (Chapter 8) replaces the one-dimensional gradient descriptors
used in the classical ASM [23] with a form of the descriptors used in Lowe’s SIFT
algorithm [68]. These descriptors, called Histogram Array Transforms (HATs [83]),
are like the descriptors used in the SIFT framework, but can be generated and tested
against the image much more quickly than standard SIFT descriptors. Multivariate
Adaptive Regression Spline (MARS [40]) models are used to match image descriptors
against the model, rather than the Mahalanobis distances used by the classical ASM.
The MARS models bring both speed and better predictions in this context.

This HAT-based ASM performs well on frontal faces, with close to state-of-the-art
accuracies on the BioID data (Figure 8.18).

The second contribution (Chapter 9), extends the HAT-based model to handle faces
with different poses, for example rotated or three-quarter views of faces. The face’s pose
is first estimated by applying face detectors specialized for frontal and three-quarter
faces. These face detectors are also applied to rotated versions of the image. They
are Viola-Jones detectors [114] optimized for specific poses and tuned to be generous
with their detections—they usually give multiple detections for the face, with most
detections from the detector that most closely matches the face’s yaw.
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Once the pose is estimated by aggregating the results from these detectors, the image
is rotated so the face is upright. Finally one of three ASM submodels optimized for
frontal, left, or right three-quarter views is applied.

This simple multiview model is fast but doesn’t quite reach state-of-the-art accuracies
(Figures 9.14 and 9.15). It performs well enough and with sufficient speed for practical
applications on realistic data.

1.2 Not the problem

There are several related problems and techniques that are not part of this thesis:

(i) Finding the overall position of face. The automatic landmarker does a local
search for facial features. Before it starts, the overall position of the face must be
determined with a standard face detector.

(ii) Locating landmarks in features in images other than faces. Only faces are
considered, although the software accompanying this thesis can build models for
other objects, such as those in medical images or components on electronic circuit
boards [79].

(iii) Finding landmarks in low-quality images of faces. This thesis focuses on the
medium- to high-resolution faces typically processed by commercial applications
like automatic and interactive retouchers or remodelers, and applications that
apply virtual makeup or eye wear. Faces for these applications are typically of
good quality, or at least not of bad quality. Very blurry or low-resolution faces
are unusual in this environment, and aren’t considered important. Note that the
goal here is a practical target that isn’t the same as trying to achieve competitive
performance on the artificially difficult face datasets that have become popularly
cited in academic papers in recent years.

(iv) Slow landmarking. Speed is important, because in the applications we have in
mind the user must wait while the automatic landmarker does its work. The face
and its landmarks should be located in less than a second, and preferably much
less than that.

(v) Recognizing the face.

(vi) Detecting the facial expression e.g. smiling, frowning. There are many schemes
to recognize the face or facial expression. Some of these schemes require land-
marks. We are concerned here only with locating the landmarks, not really with
the details of how they are used.

(vii) Using color during search. In this thesis we use only gray-level information.

(viii) Using 3D image information. We restrict ourselves to a 2D approach.

(ix) Consolidating multiple images using motion clues, etc. We search for landmarks
using a single image.



1.3 The Stasm software 13

1.3 The Stasm software

The methods presented in this thesis are embodied in the open-source Stasm software,
available at http://www.milbo.users.sonic.net/stasm. This thesis isn’t about the
software, but refers to it for concreteness and to demonstrate that the methods work.

Versions of Stasm and the associated documents are shown in the table below. When
this thesis refers to Stasm it’s referring to version 4.2, unless stated otherwise.

Version Technique Documentation

Stasm 1.5 2D gradient descriptors Milborrow and Nicolls ECCV 2008 [82]

Stasm 3.1 2D gradients, optimized version of 1.5 e.g. Çeliktutan et al. EURASIP 2013 [15]

Stasm 4.0 HAT descriptors Milborrow and Nicolls VISAPP 2014 [83]

Stasm 4.2 HAT descriptors, optimized version of 4.0 Chapter 8 of this thesis

multiview Stasm HAT descriptors, multiple models Chapter 9 of this thesis
Milborrow and Nicolls ICCV 2013 [80]

1.4 Why this approach?

The methods proposed in this thesis were initially developed in 2011 and 2012 on a
contractual basis for a commercial company. Based on the distribution of hundreds
of thousands of faces already processed by their software in the field, the company
was primarily interested in medium- to high-resolution faces, with prominence given to
frontal faces although three-quarter views were also considered important.

The company had already independently evaluated packages for automatic landmark-
ing, and had settled on Stasm mainly because of its landmarking performance on the
faces of interest. Taking this into account and to manage uncertainty we decided on an
“extend Stasm” approach—as opposed to say an approach of “go off for an indefinite
period and come back with something that is much better” or “go off for several months
and code up an algorithm in one of the papers that claim (but may not actually yield)
better performance”. It was less risky to extend the existing model than to adopt a
radically new approach, even though the potential improvements in performance would
be perhaps not as big. Another advantage of the chosen approach is that it allowed
interim software releases to benefit end users without obliging them to wait for the
entire project to be completed.

Stasm at that time used 2D gradient descriptors (Section 5.6). Given the many advances
made in image descriptors since those were implemented, updating the descriptors was
a clear way forward, with SIFT based techniques being of primary interest because of
their established reputation. Also, improved performance on non-frontal faces was nec-

http://www.milbo.users.sonic.net/stasm
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essary, and by combining ASM submodels this improved performance could be achieved
without a completely new type of model. The overall goal was simply to come up with
a model that located landmarks adequately on the faces of interest.

This goal was easily met with the methods described in this thesis. And indeed, al-
though some current competing models outperform these methods (Section 9.6.7), this
usually doesn’t translate into notably better fits in actual use on the faces of interest
in the field.

1.5 About this document

The layout of this document is as follows. Chapters 2 to 5 give a detailed description
of Active Shape Models from the ground up. Techniques for generating the start shape
are also explored. Chapter 6 discusses how these models are evaluated and compared.
These five chapters essentially form a textbook on ASMs.

A survey of the literature is given in Section 2.6. (This survey is deferred to after ASMs
are introduced to make the review more meaningful to readers who are coming to the
technology for the first time.) Additional reviews of the relevant literature appear in
context as the various sub-technologies are described, primarily in Sections 8.1, 8.7,
8.12, and 9.1.

Chapter 7 reviews some aspects of landmarked face databases. Such databases are
necessary for training and evaluating automatic landmarkers. This chapter describes
the “MUCT” face database, created by the author and his colleagues to provide more
diversity of lighting, age, and ethnicity than similar landmarked databases at the time
it was created (2009). The MUCT data was used for training the models in this thesis
because of these characteristics, and also because of the resolution of the faces and
the quality of manual landmarking. Chapter 7 also presents an empirical study of
uncertainty in manual landmarking, and discusses the “ideal” face database.

The aforementioned Chapters 2 to 7 essentially describe existing technology at the time
this project was started (although they also present a few new ideas). The next two
chapters present the principal new contributions of this thesis. Specifically, Chapter 8
introduces a model based on the new HAT descriptors, and Chapter 9 then extends the
HAT model to handle non-frontal faces. Finally, Chapter 10 wraps things up.

Three appendices describe principal components, Mahalanobis distances, and some
general principles of model building and evaluation.

Users of ASMs come to the technology with vastly differing backgrounds. In providing
engineering documentation for this diverse audience over the history of this project,
I’ve tried to explain concepts as directly and simply as possible, without assuming a
great deal of prior knowledge. Some of this engineering documentation now appears in
this thesis, giving the thesis a somewhat informal tone. In attempting to be direct and
to reduce use of the passive voice, I use the word “we” (and “our”) in a very broad
sense that ranges all the way from “I” to “people in general”.

The layout of this thesis is similar in some ways to my master’s thesis [75]. Both discuss
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ASMs and introduce new extensions to ASMs. In the current document the description
of classical ASMs is expanded. This expansion (and the inclusion of the appendices)
was motivated by queries I’ve received from users over the years. This document also
spends less time on the details of parameter tuning, with the understanding that model
parameters were selected by tuning on parameter-selection data.

Some of the text and diagrams have previously appeared in the papers listed in the table
on page 13, in the Stasm documentation, and in email and documentation written for
users of the software.
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Chapter 2

Active Shape Models

This chapter gives an overview of Active Shape Models (ASMs), followed by a literature
review. The next three chapters will cover ASMs in more detail.

Occasionally we will refer the classical ASM described in e.g. Cootes and Taylor [23].
The classical ASM is characterized by a principal-component shape model and its use of
Mahalanobis distances on one-dimensional gradient descriptors. What that all means
will be explained in this and the next few chapters.

2.1 Shapes

For our purposes, a two-dimensional shape is simply an n×2 ordered set of points: a
matrix of x,y coordinates (Figures 2.1 and 2.2). The position of a point relative to the
other points is fixed. If you move a shape, it’s still the same shape. If you expand or
rotate it, it’s still the same shape.

Edges between points aren’t part of the shape but are often drawn to clarify the rela-
tionship or ordering between the points. The centroid (also simply called the position)
of a shape is the mean of its point positions. A centered shape is a shape translated so
it is positioned on the origin.

●

●

●

1

2

3

  x     y

Point1 0.0  1.0
Point2 1.0  3.0
Point3 2.0  2.0

x1 0.0
y1 1.0
x2 1.0
y2 3.0
x3 2.0
y3 2.0

Figure 2.1: Left A simple shape, with three points
Middle The shape as a matrix
Right The shape as a vector
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Figure 2.2: A face shape.

This is a manually land-
marked face from the
MUCT 77 point data [81].

2.2 Shape models

Shape models form one leg of the Active Shape Model. A shape model defines an
allowable set of shapes. In this thesis, shape models have a fixed number of points and
a matrix formula that specifies the relationship between the points.

A shape model learns allowable constellations of shape points from training shapes.
The training shapes are manually landmarked face images. By manually landmarked we
mean that somebody had to mark all the images by hand, by clicking on the screen. This
is done before model building begins. There are various standard manually landmarked
sets of faces.

A toy shape model

To gain some intuition about shape models, let’s think about how we could create a
model that allows us to generate plausible new shapes from a set of training shapes.
A shape is considered plausible if it’s near a training shape, inbetween, or around the
training shapes.

To generate shapes, we could start with the mean shape and allow variations off this
mean. (The mean shape is the average shape after aligning the training shapes.)

If we attached the points to the mean face with springs, we could generate different
faces by stretching the springs. The more we stretch the springs the more the generated
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Figure 2.3: Variance of points in the
aligned training shapes. The points
have been placed on a reference face.

The ellipses are proportional to the
standard deviations of the points (mea-
sured on a frontal subset of the MUCT
shapes [81]).

Variation is caused by differences
in face shapes and also by manual
landmarking uncertainty. The biggest
variation is seen in the points on the
sides of the face. The nose tip also
varies more than the points around
it, possibly because of the difficulty of
determining the position of the nose
tip when manually landmarking the
faces. The pupils are stable—because
in this dataset most of the subjects look
directly at the camera and pupils are
easily located precisely during manual
landmarking.

face would differ from the average face. Points that varied less in the training shapes
would have stiffer springs than points that varied more: stiffness would have an inverse
relationship to the variance of the point (Figure 2.3). A point whose spring has to be
pulled very hard could indicate a problem—maybe the point is misplaced and the face
shape isn’t plausible.

This fanciful spring model treats points in isolation. In reality groups of points such as
the points of an eye tend to move together. Groups of points are also related to each
other in other ways—for example, if one eye is large, the other eye should also be large.
To allow these types of relationships, we need to consider relationships between points,
perhaps with some kind of “smart spring” that interconnects points. This starts getting
unwieldy, so in practice instead of this crude spring approach we use shape models based
on principal components. These models will be described in full in Chapter 3.

2.3 Overview of the Active Shape Model

This section gives an overview of Active Shape Models. The next few chapters will
then describe in detail the two types of submodel of the ASM: the descriptor models
and the shape model.

The ASM is first trained on a set of manually landmarked training images. Once
training is complete, we can use the ASM to search for features on a face as follows.
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input image of a face

1. Locate the face in the image with a face detector
2. Position the start shape on the face
3. repeat
4. Suggest a new shape by descriptor matching around each shape point
5. Adjust the suggested shape to conform to the Shape Model
6. until convergence

output shape giving the x,y coordinates of the face landmarks

Figure 2.4: The ASM search algorithm.

After locating the face in the image with a standard face detector, we generate a start
shape by positioning the mean face shape on the face detector rectangle (Figure 5.1 on
page 61 shows an example). The general idea then is (i) try to locate each landmark
independently, then (ii) correct the locations if necessary by looking at how the land-
marks are located with respect to each other. To do this, the ASM is constructed from
two types of submodel:

(i) A descriptor model for each landmark, which describes the characteristics of the
image around the landmark. The model specifies what the image is expected to
“look like” around the landmark. During training, we build the descriptor model
for the landmark by sampling the area around the landmark in the training im-
ages. During the search, we search around the tentative position of the landmark,
and move the landmark to the position where the image surface best matches the
descriptor model. This process, applied over all landmarks, generates tentative
new positions for the landmarks, called the suggested shape.

(ii) A shape model, which defines the allowable relative position of the landmarks.
During the search, the shape model adjusts the shape suggested by the descriptor
models to conform to a legitimate face shape.

The algorithm iterates for a solution by alternating these submodels as shown in Fig-
ure 2.4. There are a variety of methods of testing for convergence [23, 75], but Stasm
simply assumes convergence after iterating four times.

2.4 Interaction between the descriptor models and the shape
model

The ASM algorithm combines the results of the weak descriptor matchers to build a
stronger overall matcher. It’s a shape-constrained feature detector: the shape model
acts globally across all landmarks; each descriptor model acts locally in the image region
around the facial feature of interest.
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Figure 2.5: Left The nose tip from Figure 1.1 on page 10.
Middle 13×13 region at half image scale.
Right 13×13 region at full scale.

The shape model would be unnecessary if the descriptor models always positioned
points correctly. But each descriptor matcher sees only a small portion of the image,
so can’t be completely reliable. For example, on the right of Figure 2.5, without wider
context it’s difficult to precisely determine the position of the tip of the nose. As you
can imagine, the bright spots on the nose in this example don’t make the matcher’s job
any easier.

Figure 2.6 illustrates a shape model at work. The left side of the figure shows four
landmarks, one of which has been mispositioned by the descriptor matcher. It has been
mispositioned on the collar (because the collar line is an edge much like a jaw line, at
least in the small part of the image seen by the descriptor). The right side shows the
landmarks after correction by the shape model. The mispositioned landmark is now
correctly on the jawline.

Figure 2.7 shows a shape model operating on all points of a face shape during one
iteration of an ASM search. In the left figure, some of the suggested points for the
left1 upper eyelid are in impossible positions—they are below the pupil. In the right
figure, these points are in more sensible positions with respect to the surrounding points.
Similar corrections can be seen elsewhere.

1In this thesis, left and right are with respect to the viewer, not the subject.

Figure 2.6: Operation of the shape
model.

Left Landmarks located by
the descriptor models.

Right The same landmarks
conformed to the shape model.
The landmark that was snagged
on the collar is now in a better
position.
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Figure 2.7:
Operation
of the
shape
model.

Left
A shape

suggested
by the
descriptor
models.

Right
The shape
after cor-
rection by
the shape
model.

2.5 Multi-resolution search

An ASM search works best if we start off by approximately positioning the landmarks
on a low resolution image, and then refine the search on higher resolution images.
This multi-resolution approach converges more often to the correct shape than simply
searching at full resolution, which is more prone to getting stuck in local minima.

Therefore, before the search begins we build an image pyramid [1]. Each image in the
image pyramid is a down-scaled version of the image above it (Figure 2.8). We start
the ASM search at the lowest resolution image in the pyramid, and repeat the search
at each level, from coarse to fine resolution. The start shape for the first search (which
is on the coarsest image) is the mean shape aligned to the global face detector. The
start shape at subsequent levels is the best shape found by the search at the previous
level. The shape model is the same across all pyramid levels (apart from scaling), but
a separate descriptor model is needed for each point at each level.

Figure 2.10 on the following page shows the start shape, then one iteration of an ASM
search at each level in a four-level pyramid.

There are a variety of methods for downscaling the pyramid images (e.g. Gonzalez and
Woods [42]). Stasm uses bilinear interpolation with four pyramid levels, and halves the
width of the image at each level.
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Figure 2.8: An image pyramid.

The left image is at full resolu-
tion. In this pyramid, the width of
each image is half that of the image
to its left (i.e. a quarter of the resolu-
tion).

Figure 2.9: The images in the above pyramid resized to the same size on the page.
The loss of resolution in higher pyramid levels is evident.

Figure 2.10: The start shape and the ASM search at each level in a four-level pyramid.
Each image shows the shape after correction by the shape model. Intermediate shapes
aren’t shown.
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2.6 Literature review

This section first presents a history of the ASM and its direct descendants. It then gives
an overview of some of the current alternative approaches to facial landmarking. Addi-
tional overviews of the relevant literature appear in context later in this document as
the various sub-technologies are described, primarily in Sections 8.1, 8.7, 8.12, and 9.1.

2.6.1 Predecessors of the ASM

ASMs belong to the class of models that, after a shape is situated near an image feature,
interact with the image to warp the shape to the feature. A variety of such deformable
models were developed before the ASM.

A classic example is the snake, also called the Active Contour Model (Kass et al. [56]).
Snakes iteratively minimize the sum of “external” and “internal” energies. External
energy is minimized as the snake molds itself to the desired image feature. Internal
energy constrains the snake shape, typically by penalizing curviness.

A problem with snakes is that they can easily hitch onto the wrong image feature. Also,
snakes don’t like to bend and thus have difficulties locating sharply curved features.
Researchers have modified snakes and/or used them in combined models to help deal
with these issues. An example is the eye locater of Yuille et al. [123], which is a
handcrafted deformable model that incorporates global information about eyes. The
trouble here is that you have to manually design a new model for each application.

Another approach is to use finite element methods to represent prototype shapes
(e.g. Pentland and Sclaroff [91]). This approach takes a single shape and treats it as
if it were made of elastic material. However, the “modes of vibration” used to deform
the shape may not represent the actual variations of the image feature being modeled.

Staib and Duncan presented a method of shape modeling based on Fourier descrip-
tors [107]. (Fourier descriptors themselves were developed much earlier [92, 125].) Dif-
ferent shapes are generated by varying the parameters of a Fourier series defining the
coordinates of the shape perimeter. Unfortunately these models cannot easily describe
all shapes, especially sharp curves, and choosing parameters for the Fourier series is
tricky.

2.6.2 Statistical shape models

Two independent fields of research led to the shape and descriptor models used in the
ASM. One field, mostly independent of image analysis, was the development of statisti-
cal shape models [32,57]. The central idea is that once you represent shapes as vectors
(Section 3.1), you can apply standard statistical methods to them just like any other
multivariate statistical object. These models learn allowable constellations of shape
points from training examples and typically use principal components to build Point
Distribution Models, which is another name for what we call shape models. These mod-
els have been used in diverse ways, for example for categorizing Iron Age brooches [105].
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2.6.3 Locating image features

Feature location in images was the other field of research that led to the ASM. Initial
research focused on image segmentation, which divides images into regions with similar
characteristics. For example, we may want to separate grasslands from forests in satel-
lite images. There are a host of techniques for doing this, often based on edge and line
detection. These techniques are described in any image processing textbook (e.g. Gon-
zalez and Woods [42], Nixon and Aguado [86]).

For feature location, the most basic approach is to make a template of the average
gray levels of the image feature in question. For example, we could make a template
of the outer corner of the left eye in a frontal face. This template is then moved over
the search image looking for matches. Variability of image textures and features make
this simple technique inadequate, and a good deal of research has gone into developing
descriptors, which are essentially an advanced form of template. For a general overview
see e.g. Nixon and Aguado [86] or Prince [93].

2.6.4 Active Shape Models

Cootes and Taylor and their colleagues synthesized ideas from the fields of shape mod-
eling and image processing to create the ASM. In 1991 they presented the first model
for image analysis using a principal-component shape model [21]. The shape model
can deform only in ways that are characteristic of the object—so if a beard, say, covers
the chin, the shape model can “override the image” to approximate the position of the
chin under the beard. Building on this approach they released a series of papers that
culminated in what we call the classical ASM [23].

Apart from better performance at the time than other facial feature locaters, ASMs
had the advantage that they didn’t require a handcrafted model, although the training
images had to be manually landmarked. ASMs are built by training on a set of reference
images, a process which mechanically extracts important characteristics of the training
set. In practice, hand tuning of parameters is still needed to get best results for a
specific application.

2.6.5 Extensions to ASMs

Many extensions to the classical ASM have been proposed. This subsection summarizes
some of the principal early developments.

Cootes et al. [22] presented a shape model that is a mixture of multivariate Gaus-
sians, rather than assuming that the shapes come from a single multivariate Gaussian
distribution.

Romdhani et al. [98] used Kernel Principal Component Analysis [103] and a Support
Vector Machine [12]. This trains on 2D images, but models non-linear changes to face
shapes as they are rotated in 3D. The idea is to project non-linearities into a higher-
dimensional linear space.
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Rogers and Graham [97] used robust least-squares techniques to minimize the residuals
between the model shape and the suggested shape. Shape alignment in a classical ASM,
in contrast, uses standard least-squares which is susceptible to outliers.

Van Ginneken et al. [41] took the tack of replacing the 1D gradient profiles used in
the classical ASM with local descriptors calculated from “locally orderless images” [59].
Their method automatically selects the optimum set of descriptors. They also replace
the standard ASM profile model search, which is based on Mahalanobis distances, with
a k-nearest-neighbors classifier.

Y. Zhou et al. [131] presented the Bayesian Tangent Shape Model. This estimates shape
and pose parameters using Bayesian inference after projecting the shapes into a tangent
space.

My master’s thesis [75] and associated paper [82] replaced the 1D profiles used in the
classical ASM with 2D gradient descriptors. These descriptors are described in detail
in Section 5.6.

Cootes, Edwards, and their colleagues took some of the ideas of the ASM significantly
further with the development of the Active Appearance Model (AAM) [19,35]. AAMs
merge the shape and texture models into a single model of appearance. Texture is
measured across the whole object, i.e. the whole face. An optimization technique that
pre-calculates residuals during training is used when matching image texture to model
texture.

The AAM has many descendants. A well-known example is the Constrained Local
Model of Cristinacce [28].

2.6.6 Modern directions

Almost every method (and there are dozens) for locating face landmarks has its roots in
the ASM, but researchers have now taken the technology in very new directions. Most
of these new directions aren’t of immediate relevance to us (since this thesis is mostly
concerned only with extensions to ASMs), so this section just mentions some that were
developed independently in parallel with the work in this thesis. More comprehensive
surveys can be found in Saragih et al. [101] and Çeliktutan et al. [15].

In 2010, Dollár et al. [31] introduced Cascaded Pose Regression (CPR), primarily for
estimating the pose of objects in images (where “pose” here means any set of systematic
and parameterizable changes in the appearance of the object, such as the changing
curves of a fish2). CPR takes an initial guess of the object’s position and pose, and then
successively refines it. Each refinement is carried out by a different regressor, which
accumulates the results on “pose-indexed features” (meaning features whose output
depends on both information from the image and the current estimate of pose).

2Elsewhere in this document we use “pose” in a slightly less general sense, to mean the angle from
which the face was photographed, or equivalently, the head’s yaw, pitch, and roll with respect to the
camera. Figure 3.16 on page 44 illustrates these terms.
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CPR became important for facial landmarking when it was adapted for that purpose in
2012 by Cao et al. [13]. Their method, in addition to using CPR, estimates adjustments
to the shape as a whole, that is, it uses a model of appearance over all landmarks on
the face (not per-landmark), without making use of an explicit shape model. The fitted
face shape is a linear combination of the training shapes. This method is significantly
faster than the 2011 method of Belhumeur et al. [7] on the BioID data [2], although
with only a small increase in landmarking accuracy on that data.

The Supervised Descent Method (SDM) presented in 2013 by Xiong and de la Torre [120]
has become very influential. This method optimizes the approach of Cao et al. by us-
ing HOG descriptors [29] and a highly efficient least-squares technique for inference: it
learns a sequence of descent directions during training that makes optimization during
the search for landmarks efficient and simple to implement.

The above-mentioned SDM has become the basis for many other methods, such as the
2015 models of Martinez and Valstar [71] and Tzimiropoulos [110]. These two methods
will be considered in Section 9.6.7, where we compare results to the model proposed in
this thesis.

It’s possible that the SDM and its descendants will now be supplanted by alternative
approaches such as that of Ren et al. [96]. Time will tell.



Chapter 3

Shape models

As part of its overview of ASMs, the previous chapter gave an overview of shape models
(Section 2.2). Now in this chapter we go into the details of shape models. Descriptor
models will be covered in a later chapter.

Recall that a shape model defines a set of allowable shapes, and that in an ASM
the shape model converts shapes suggested by the descriptor models to plausible face
shapes. Obviously our focus here is on faces, but nearly everything in this chapter
also applies to other types of shapes, such as those used in medical images. (Perhaps
the biggest difference in practice between models for faces and for medical images is
that current training sets for medical images tend to be much smaller, raising some
statistical and mathematical issues that don’t bother us here.)

3.1 Shape space: shapes as vectors

Remember from Section 2.1 on page 16 that a shape with n points is just an n×2 matrix
of x,y coordinates related to each other in some invariant sense.

It’s often convenient to represent a shape not as an n×2 array of x,y coordinates, but
as a 2n×1 vector: the x,y coordinates of the first point followed by the x,y coordinates
of the remaining points:

x = (x1, y1, x2, y2, . . . , xn, yn)T . (3.1)

This representation is used in the equations in this document and in our software.
(Many authors use a different ordering convention: first all the x coordinates, then all
the y coordinates. Either convention is fine.)

We can work with this vector as a mathematical object in multidimensional space, just
like any other vector. The equations operating on this vector don’t know or care that
it was originally a shape consisting of pairs of x,y coordinates.

The 2n-dimensional vector exists in what is called shape space. An entire shape is a
single point in shape space. The training shapes are a swarm of points in shape space.
Plausible face shapes exist in a subregion, or manifold, of the shape space.
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3.2 Distances and sizes

The distance between two shapes x1 and x2, written as |x1,x2|, is the square-root of
the sum of the squared distances between their corresponding points:

|x1,x2| =
√

(x1 − x2) · (x1 − x2) . (3.2)

The size of a shape is the square-root of the sum of the squared distances from its
points to its centroid.

These measures are often normalized by dividing by the number of points in the shape.
There are other measures of distance and size but we don’t need them.

3.3 Transforming shapes

We can move a shape, rotate it, or change its size. In the language of linear algebra,
these are linear-translation, rotation, and scaling transforms. A transform that does all
three (but nothing else, such as shearing) is a similarity transform.

Now let’s briefly focus on single points, rather than on shapes. The similarity transform
T that rotates the point x,y by θ, scales it by s, and translates it by xtranslate and ytranslate
is

T

(
x
y

)
=

(
xtranslate
ytranslate

)
+

(
s cos θ s sin θ
−s sin θ s cos θ

)(
x
y

)
. (3.3)

The above equation requires two transformation matrices: one for translation and one
for scaling and rotation. The 2×1 translation matrix is necessary because matrix
multiplication can’t shift the origin: zero multiplied by anything is still zero. However
it’s often more convenient to represent the entire transformation as a single matrix.
We do this using the trick of homogeneous coordinates, by temporarily appending a
dummy entry fixed at 1 to the two-dimensional x,y vector. We can then specify the
above transform with a single 3×3 matrix:

T

 x
y
1

 =

 s cos θ s sin θ xtranslate
−s sin θ s cos θ ytranslate

0 0 1

 x
y
1

 . (3.4)

The above transform can be applied to a shape (as opposed to a single point) simply
by applying it independently to each point in the shape.

3.4 Aligning a shape to another shape

A shape can be aligned to another shape by applying a transform that yields the
minimum distance between the shapes. Appendix B in Cootes and Taylor [23] gives a
method to align two shapes. It aligns the shape x1 to the shape x2 using a least-squares
procedure: it calculates the transform T that minimizes the distance |T (x1)−x2|. This
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kind of alignment is sometimes called Procrustes alignment (after a figure from Greek
mythology).

Accurate alignment may be deemed more important for certain points than for others,
and points can be weighted accordingly during alignment. But in this thesis, points
either have a weight of one or zero—a point is either used or not-used (Section 3.13).

3.5 Aligning a set of shapes

During training we need to align not just two shapes but a set of shapes. By definition,
alignment means that the total distance from the aligned shapes to the mean shape is
minimized. The mean shape is the average of the aligned shapes.

If we knew the mean shape beforehand, we could simply align all the shapes to the
mean shape and be done. Since we don’t have this prior knowledge (it’s a chicken and
egg situation), we instead create an initial provisional mean shape from a reference
shape, and iterate using the algorithm in Figure 3.1. The reference shape can be any
shape in the set of shapes; the first shape is usually as good as any.

Line 6 of the algorithm constrains the mean shape to have approximately the same
centroid and size as the reference shape. This step is necessary because without some
constraints multiple shape alignment is ill-defined, in the sense that a set of shapes can
be aligned but with their mean positioned anywhere. Also, we have to make sure that
the algorithm doesn’t minimize distances by making the shapes smaller and smaller.
(Technically, shapes can be aligned by simply zeroing all the points.)

Figure 3.2 shows the reference shape for the Stasm frontal model, and the mean shape
aligned to the reference shape.

Before alignment begins, it may be beneficial to position the reference shape on the
origin and prescale its size to unity. However this isn’t essential—the absolute position

input a set of unaligned shapes

1. Select a reference shape. (The reference shape
doesn’t change. It is typically the first shape.)

2. Generate the initial mean shape as a copy of the reference shape.
3. repeat
4. Align all shapes to the mean shape.
5. Recalculate the mean shape from the aligned shapes.
6. Align the mean shape to the reference shape.
7. until convergence (the mean shape is stable)

output the mean shape and the set of aligned shapes

Figure 3.1: Aligning a set of shapes.
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Figure 3.2:

The Stasm reference shape (red)
and the mean shape (white).

The reference shape is the first
shape in the training set.

and scale of the model space isn’t important. It’s also convenient if the reference shape
(and hence the model mean shape) is approximately upright. For face shapes, “upright”
can be defined to mean that the eyes in the face are horizontal.

Scaling and rotating shapes during alignment introduces artificial non-linearities [23,
108]. The effect of these can be minimized by projecting shapes into a tangent space,
but tangent spaces aren’t used in our software.

Analytic methods exist for aligning shapes [43], but the iterative algorithm is uncompli-
cated, and easily fast enough in practice. Only four iterations are needed to align several
thousand training shapes when training the Stasm frontal model, taking well under a
second. Cootes and Taylor [23] discuss some variations of the iterative algorithm.

3.6 Shape models

To create the shape model, we use a standard principal components approach (Ap-
pendix A) to generate a set of directions, or axes, along which the mean shape can be
flexed in shape space to best represent the way the faces vary in the training set. This
is done as described below. Figure 3.3 is an overview. Remember that we represent
shapes in these equations as vectors in shape space (Section 3.1).

To generate the shape model, first the training shapes must be aligned as described in
the previous section. The shape model then consists of the mean aligned shape x̄ and
allowed distortions from the mean:

x̂ = x̄ + Φb ,
(3.5)

where x̂ is the generated shape. The hat on x̂ reminds us that it is generated by a
model. The sketch on the right of the formula illustrates the shapes of the participants.
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The mean shape x̄ is the average of the aligned training shapes xi, i.e.,

x̄ =
1

nshapes

nshapes∑
i=1

xi . (3.6)

Each column of the square matrix Φ is a unit-length eigenvector, a principal axis of
the aligned shape space. That is, the matrix Φ is the eigenmatrix of the covariance
matrix Sshapes of the aligned training shapes. We will examine eigenvectors in more
detail shortly.

The covariance matrix Sshapes is defined in the standard way, i.e.,

Sshapes =
1

nshapes − 1

nshapes∑
i=1

(xi − x̄)(xi − x̄)T . (3.7)

The vector b in Equation 3.5 is a set of parameters that we can vary to generate different
shapes. In other words, by varying the elements of the parameter vector b we generate
different linear combinations of the principal axes in Φ, and thus generate different
shapes.

Figure 3.3: How the shape model is generated and used.
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Figure 3.4: Effect of princi-
pal components in the shape
model. The figure shows the
mean shape with a multiple of
an eigenvector added (pink)
or subtracted (black).

PC 1 changes the size of
the side of the face relative to
the facial features (it mainly
accounts for yaw).

PC 6 mainly affects the
mouth, and to a lesser extent
the jawline and the eyebrows.

3.7 Generating shapes from the shape model

As just mentioned, we can use the shape model Equation 3.5 to generate different shapes
by varying the parameter b. By keeping the elements of b within limits we ensure that
generated faces are lifelike. The next section will consider eigenvectors in more detail,
but first let’s look at some simple examples.

Figure 3.4 shows faces generated by adding multiples of a single eigenvector to the
mean shape. The left figure was generated using Equation 3.5 with b1 set to ±2

√
λ1

and with all other bi’s fixed at 0 (where b1 is the first element of b and λ1 is the largest
eigenvalue).

If the distribution of the training shape points in shape space is Gaussian then so will be
the distribution of bi, and the black and pink shapes will delimit 95% of the variability
along the first principal axis. This is because ±2 standard deviations covers 95% of
the area under the bell curve—the relationship between the eigenvalues and standard
deviations will be reviewed in the next section.

The right figure was generated in a similar fashion from the sixth eigenvector. This
eigenvector was chosen for illustration because for this set of training shapes it happens
to have a fairly clear effect on the mouth. In general, the principal axes of shape models
can’t be interpreted so easily.

3.8 Mathematics of shape models

This section reviews some standard linear algebra and statistics necessary for a full
understanding of the shape model. The next section gives an example which will help
to make this mathematics more clear. Readers unfamiliar with Principal Component
Analysis may want to first visit Appendix A, which gives an overview of principal
components.



3.9 Understanding the shape model 33

Eigenvectors

Because the eigenvectors are generated from the covariance matrix, they are the prin-
cipal axes of the data. We can thus use the terms “eigenvector” and “principal axis”
interchangeably here. Although “eigenvector” has a broader meaning, in this thesis all
eigenvectors are principal axes.

By convention, the eigenvectors in the matrix Φ are normalized to unit length and are
ordered on their eigenvalues from left to right in the matrix. Thus the first column of
Φ corresponds to the largest eigenvalue of Sshapes. This first column is the first eigen-
vector, or first principal axis, of the aligned and centered training shapes. The second
column is the second principal axis, orthogonal in shape space to the first principal
axis. (Remember that we are working in shape space, where we treat shapes as points
in multidimensional space.)

Since the eigenvectors are unit length and orthogonal to each other, the eigenmatrix is
an orthogonal matrix, and thus its inverse is its transpose.

The column space of the eigenmatrix is identical to that of the aligned and centered
training shapes. Therefore any of the training shapes can be recreated by a linear
combination of the eigenvectors. A training shape can be approximated using a linear
combination of just the first few eigenvectors; as we use more eigenvectors we can
approximate the shape more precisely.

Eigenvalues

A covariance matrix is symmetric and real (it has no imaginary components). Therefore
it has a full set of real orthogonal eigenvectors. Furthermore a covariance matrix is at
least positive-semidefinite (Section B.3.3). Therefore its eigenvalues are nonnegative.

Because the eigenmatrix is created from the covariance matrix, each eigenvalue is the
variance of the data in the direction of the associated eigenvector (and therefore its
square root is the standard deviation in that direction). Thus an eigenvalue is a measure
of the importance of its eigenvector. Eigenvectors on the left of the matrix Φ have large
eigenvalues and point in directions that capture the bulk of variation in the training
set. Eigenvectors on the right of the matrix have small eigenvalues and typically just
represent noise in the sampled set.

3.9 Understanding the shape model

It’s easier to gain an intuitive understanding of the shape model if we use rectangles
instead of complicated face shapes. Figure 3.5 shows an example of such rectangles.

To specify the four points of any of the rectangles, we need eight numbers: four x- and
four y-coordinates. The shape space is eight-dimensional. But the rectangles in this
example are centered and symmetrical about the origin. Thus we can actually define a
rectangle by just two parameters: its width and height.
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A set of rectangular shapes,
symmetrical about the origin

Variations of the first PC Variations of the second PC

Figure 3.5: A simple four-point model.
Left A set of rectangular shapes, symmetrical about the origin, with their mean shape.
Middle Mean shape and variations by adding a multiple of the first eigenvector.
Right Variations created by adding a multiple of the second eigenvector.

The same shapes, with added noise

Figure 3.6: The same set of shapes
with Gaussian noise added to the
points in the horizontal and vertical
directions.

This noise could for example rep-
resent uncertainty in the manually
landmarked points (although exagger-
ated here).

Now we generate the mean shape and covariance matrix of the rectangles, and hence
the shape model (Equation 3.5). The shape model x̂ = x̄+ Φb becomes1

x̂ =


6 6
−6 6
−6 −6

6 −6

 + b1


0.2 0.5
−0.2 0.5
−0.2 −0.5

0.2 −0.5

 + b2


0.5 −0.2
−0.5 −0.2
−0.5 0.2

0.5 0.2

 + . . . (3.8)

The sorted eigenvalues of the covariance matrix Sshapes are 13.6, 9.2, 0, 0, . . . , 0.
There are eight eigenvalues altogether. The first two are important. The rest are zero
(actually not exactly zero on a computer because of numerical error, but extremely
small).

Thus the process has discovered that the shapes can be parameterized by just two
parameters, b1 and b2 (as shown in the scree plot on the left of Figure 3.7). The

1The 8×1 vectors are rounded to one decimal place and reshaped into 4×2 matrices for clarity. The
left column of each matrix shows x values; the right column shows y values.
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Figure 3.7: Scree plots for the rectangle shapes.

Scree plots show the ordered eigenvalues. An eigenvalue is the variance of the
corresponding principal component. In the figures I have chosen to plot the square root
of the eigenvalues to show standard deviations rather than variances, to emphasize the
nonzero eigenvalues in the graph on the right.

Left The centered rectangles (illustrated in Figure 3.5).
All eigenvalues except the first two are zero. The first two principal components account
for all variation in the shapes. The shapes can be specified with just two parameters.

Right The noisy centered rectangles (illustrated in Figure 3.6).
The spurious variability is captured by the 3rd and higher principal components.
We need more than two parameters to precisely specify the shapes, although two
parameters suffice to specify their overall structure.

shapes exist in a two-dimensional subspace of the eight-dimensional shape space. The
first parameter varies the contribution of the first eigenvector and, in this example,
chiefly changes the overall size of the generated shape. The second parameter varies
the contribution of the second eigenvector, which mainly adjusts the aspect ratio of
the shape. (I artificially generated the training rectangles to have this simple overall-
size and aspect-ratio interpretation. For an arbitrary set of centered rectangles, the
eigenvectors generally won’t have such a simple interpretation.)

What is the advantage of this shape model over the “obvious” model where the two
parameters simply specify the width and height? The advantage is that the first prin-
cipal axis, of all possible axes, captures as much variation as possible in this sample
of shapes. If you had to specify a shape using just a single parameter, you would on
the whole get closer to your desired shape by adding a multiple of the first principal
axis to the mean shape, rather than by changing just the width or just the height.
The second principal axis captures as much of the remaining variation as possible, with
the constraint that the principal axes are orthogonal. Since in this example only two
eigenvalues are non-zero, the second principal axis in fact captures all the remaining
variation.



3.10 Constraining the shape model 36

Now let’s add some noise to the rectangle coordinates (Figure 3.6), and re-generate the
shape model. We discover that the remaining eigenvalues are no longer zero, as can be
seen on the right side of Figure 3.7. Linear combinations of the first two eigenvectors
no longer suffice to generate the training shapes. Nevertheless the first two eigenvalues
clearly account for most of the variance, and we can approximate the training shapes
with just two eigenvectors.

For realistic face data there will be many eigenvalues and no abrupt cutoff point (as can
be seen in the scree plot in Figure 3.8). We can capture as much variation of the input
shapes as we want by retaining the appropriate number of eigenvectors. But what is
the appropriate number? This brings us to the next section.

3.10 Constraining the shape model

In the shape model formula (Equation 3.5), generated shapes are determined by setting
values of the vector b. To ensure that the generated faces are lifelike, we must limit the
number of eigenvectors and constrain the allowed values of b.

3.10.1 Limiting the number of eigenvectors

We want to retain what is essential in our set of training shapes, and so want to ignore
sampling quirks, very unusual facial features, and manual landmarking mistakes and
uncertainty. As is standard practice when using principal components, we therefore
retain only the subset of the principal components corresponding to larger eigenvalues.
That is, we keep only the leftmost eigenvectors in the eigenmatrix Φ. (As always,
we assume the columns of Φ are ordered on the eigenvalues, so the most important
eigenvectors are on the left.) Pictorially,

(3.9)

becomes

(3.10)

The set of eigenvectors defines the set of directions in shape space along which the
shapes can vary. By truncating the eigenmatrix we limit the model to the underlying
intrinsic dimensionality of the population of shapes. (Or at least try to, since we can
never be entirely sure of the properties of the population from the training set, which
is just a sample of the population).

How do we determine the number of eigenvectors to retain? A textbook approach is to
look for a knee in the scree plot, which would indicate a natural cutoff point. But scree
diagrams for realistic shape models exhibit no such knee (Figure 3.8). Alternatively
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Figure 3.8: Scree plot for the
Stasm frontal model.

Only 50 of the 154 eigenvalues are
shown. (There are 77 × 2 = 154
values because the shapes have 77
points with an x and y coordinate
for each point.)

The vertical dashed line shows the
number of eigenvectors selected by
empirical testing.

we could choose to explain a reasonable percentage of the variance in the training set,
say 95%, and select the number of eigenvalues necessary to explain that proportion of
variance.

But our end goal really is to accurately locate face landmarks. The amount of variance
explained is just a means to that end. Thus we determine the number of eigenvectors
empirically, that is, by choosing the number of eigenvectors that gives the best landmark
accuracies on a parameter-selection set of faces. When tuning the Stasm frontal model,
this approach selected 20 eigenvectors, which happen to explain 91% of the training set
variance. The precise number of eigenvectors is in fact not critical in this application.

3.10.2 Constraining the shape parameter b

To ensure that the model faces are realistic, we must limit the range of values of the
shape model parameter b. For example, if we allowed an excessively large b6 in the
face on the right of Figure 3.4, the generated shape would have an unrealistically large
mouth. Given an arbitrary b, an easy way of applying limits is to clamp each element
bi of b independently. We clamp each bi to a predetermined multiple m of its standard
deviation

|bi| < m σi , (3.11)

where m is a clamping constant determined during training, and σi is the standard
deviation of bi measured on the training shapes. Since an eigenvalue λi is the variance
of the corresponding principal component bi, this is equivalent to

|bi| < m
√
λi . (3.12)

If m is 2, for example, then ±2 standard deviations of bi in the training data will be
within the clamped bi. So if bi is Gaussian, then 95% of the values in the training
data will less than the clamped bi. But our end goal really is to accurately locate face
landmarks and the allowed range of b is just a means to that end. Thus in our software
m is chosen empirically on a parameter-selection set.
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The black points were drawn from a two-

dimensional normal distribution.

By Equation 3.12, points outside the

gray rectangle are considered outliers.

By Equation 3.13, points outside the

gray ellipse are considered outliers.

In this example, the rectangle and el-

lipse were generated with m = 3.

Figure 3.9: Constraining b.

The red point is an outlier. By clamping each dimension independently (Equa-
tion 3.12), we clamp the red point to the light green point on the gray rectangle. For
this outlying point it so happens that we needed to clamp only in the vertical direction
to bring the point onto the rectangle. The clamped point is still outside the ellipse.

More correctly, to match the ellipsoidal equi-probability contours of this Gaus-
sian distribution, we should “shrink” the red point towards the center of the distribution
i.e., towards to the nearest point on the ellipse as shown by the darker green point.

We can show only two dimensions on a printed page, but actually in a shape
model the number of dimensions would be the selected number of eigenvectors
(Section 3.10.1).

It should be mentioned that this simple clamping technique, where we clamp each bi
independently, theoretically isn’t optimal. The distribution of shape coordinates in
multidimensional space is approximately ellipsoidal (or at least more ellipsoidal than
rectangular). Thus, as illustrated in Figure 3.9, b should be constrained to an ellipsoid

1

neigs

neigs∑
i=1

b2i
λi

< m2, (3.13)

where neigs is the selected number of eigenvectors (Section 3.10.1) and once again m is
a constant determined during training2. If m is 2, for example, the above inequality
constrains the generated shape to within 2 standard deviations of the mean shape. To
force the above inequality, we multiply b by a constant less than 1, shrinking it towards
zero, and thereby shrinking the generated shape towards the center of the distribution.

Clamping each bi independently would be optimal if the distribution were rectangular,
not ellipsoidal. However, in practice simple clamping seems to work just as well as
constraining to an ellipsoid ([75] Section 5.4.3).

2We mention that the sum term on the left is the squared Mahalanobis distance of b from the
center 0 of the distribution. Since the principal components are independent there are no covariance
terms. The squared Mahalanobis distance is thus

∑
b2i /λi = bTΛb where Λ = diag(λ1, λ2, ..., λt).
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Figure 3.10: Mean landmark fitting error
for various values of m (the clamping
constant, Equation 3.12) and neigs (the
number of retained eigenvectors).

The solid curves show the fit for land-
marks positioned by an ASM over a sample
of faces.

The dashed curves show how well the
shape model acting alone can recreate the
training shapes. It can’t represent the
training shapes well if m is too low or if
an insufficient number of eigenvectors is
retained for the model.

Gray and black are used to distinguish
curves and have no special meaning. This
graph shows error expressed as the mean
me17 (Section 6.2.1). The graph is for a
68 point model in an old version of Stasm,
and is based on Figure 5.3 in [75].

3.10.3 Tuning the shape model parameters

Figure 3.10 shows how the landmark fitting error typically varies with the clamping
constant m and the number of retained eigenvectors.

Shape constraints impose a lower error bound for automatic landmarking, because the
constraints imposed by the shape model will usually adjust landmarks if we conform
even a training shape to the model. We get close to the ideal of being able to exactly
regenerate any training shape if we use a large m and a large set of eigenvectors (the
dashed curve at the bottom right of the plot). But using such a flexible shape model
won’t optimally correct implausible suggested shapes during the search, and so doesn’t
give the best results when searching (as can be seen by the upward slopes of the solid
curves on the right of the plot). Thus a smaller m and reduced set of eigenvectors works
better, even though it doesn’t allow us to exactly reproduce the training shapes.

3.11 Conforming a given shape to the shape model

We have examined in some detail how the shape model can generate shapes. Now we
look at how we can adjust an arbitrary shape to conform to the shape model. Given
an arbitrary suggested shape x, we want to calculate the parameter b that allows
Equation 3.5 to best approximate x with a model shape x̂.
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Figure 3.11: Image space
and model space.

The face can be any-
where in the image. To
use the shape model, we
first must transform the
shape from the image to
the model space.

When we have fin-
ished manipulating the
shape in model space, we
invert the transform to
position the shape back
on the image.

3.11.1 Image space and model space

First a few remarks on image space and model space (Figure 3.11). The face we are
interested can be anywhere in the image. The shape points have x,y pixel coordinates
in image space, whereas a shape x̂ generated by the model has x,y coordinates in model
space. The center and scale of the model space is determined during training by the set
of training shapes, the position of the reference shape, and so on. (In both spaces we
typically work with the shape as a 2n-vector. Image space and model space can thus
be considered as two different forms of shape space.)

To use the model, we must transform the face shape from the image space to the model
space. The transform will depend on the position, orientation, and scale of the image
shape. Once we have used the shape model, we apply the inverse transform to place
the shape back on the image.

3.11.2 Conforming a given shape to the shape model

To approximate a suggested shape with a model shape, we seek the T and b that
minimize the distance

|T (xsuggested), x̂| (3.14)

= |T (xsuggested), x̄+ Φb| , (3.15)

where T is a similarity transform that maps from the image to the model space,
xsuggested is the given suggested image shape, and x̂ is a model shape.

Figure 3.12 on the following page gives an iterative algorithm to do this. It maps the
suggested shape to the model space, corrects wayward points by constraining b, then
maps the corrected model shape back to the image. The algorithm follows Section 4.8
in Cootes and Taylor [23]. Note that T in the notation here is T−1 in their notation.
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input the suggested image shape xsuggested

Zero the model parameters b

repeat

1. Generate a model shape x̂ = x̄+ Φb

2. Calculate the T that maps the image shape xsuggested to the model space
This is the transform T that minimizes |T (xsuggested), x̂| as described in Section 3.4

3. Transform the image shape to the model space: x = T (xsuggested)

4. Update the model parameters b = ΦT (x− x̄)

5. Constrain b as described in Section 3.10.2

until convergence (T and b are stable)

Transform the model shape back to the image space: xsuggested = T−1(x̂)

output new version of the image shape xsuggested , conformed to the shape model

Figure 3.12: Conforming an image shape to the shape model (iterative version).
The shape xsuggested is in the image space, all other shapes are in the model space.

input (i) the suggested image shape xsuggested

(ii) the shape model parameters b from the previous ASM iteration

1. Generate a model shape x̂ = x̄+ Φb

2. Calculate the T that maps the image shape xsuggested to the model space
This is the transform T that minimizes |T (xsuggested), x̂| as described in Section 3.4

3. Transform the image shape to the model space: x = T (xsuggested)

4. Update the model parameters b = ΦT (x− x̄)

5. Constrain b as described in Section 3.10.2

6. Using the constrained b generate the conformed model shape x̂ = x̄+ Φb

7. Transform the model shape back to the image space: xsuggested = T−1(x̂)

output (i) new version of the image shape xsuggested , conformed to the shape model
(ii) the shape model parameters b, for use next time

Figure 3.13: Conforming an image shape to the shape model (non-iterative version).
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input (i) the suggested image shape xsuggested

(ii) the list of pinned point positions

1. Allow the descriptor models to suggest a shape as usual,
but leave pinned points in place.

2. repeat

3. Conform the shape to the shape model as usual (Figure 3.13).
In general this will move the pinned points.

4. dist = mean distance between the points and their pinned positions

5 Force pinned points back to their pinned positions.

6. until convergence (dist is less than half a pixel)

output conformed version of the image shape, with points pinned

Figure 3.14: Conforming a shape with pinned points.
This algorithm replaces Steps 4 and 5 in Figure 2.4.

The algorithm can be simplified slightly. In practice, we don’t need to iterate the
shape model, because iteration is built into the ASM search (Figure 2.4 on page 19).
Instead of initializing the shape model parameter b to zero, we use its value from the
previous iteration of the ASM (after setting it to zero the very first time). The iterative
algorithm in Figure 3.12 simplifies to the non-iterative algorithm in Figure 3.13. This is
the algorithm used in our software and empirically gives results as good as the iterative
algorithm.

3.12 Pinned points and interactive landmark location

Sometimes we want to keep the positions of certain points fixed. Such pinned points
shouldn’t be moved by the ASM search. For example, in an interactive application the
user may manually position some landmarks, and possibly iteratively interact with the
automatic landmarker to correct points.

The body of the ASM search algorithm (Figure 2.4) can be modified to handle pinned
points as shown in Figure 3.14.

3.13 Missing points

Sometimes a landmark is obscured in a training shape, perhaps by the side of the face
or the nose (Figure 3.15). Minor complications caused by missing points ripple out
to several places during model training. These complications are handled as described
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Figure 3.15:
Obscured landmarks.

As the subject turns
her head slightly, the
landmark on the edge
of the eyebrow is
obscured by her face.

below. Readers uninterested in the mundane details of missing points can skip directly
to Section 3.15

In our software, a missing point is indicated with coordinates (0,0). During processing,
it’s sometimes possible for the coordinates of a valid point to become zero (for example,
when manipulating the shape with the shape model). Such a point shouldn’t be treated
as missing in further processing, so the software automatically jitters the point’s x
coordinate to 0.1.

To avoid unnecessary complications, the reference shape must have all points.

Missing points are also useful in other situations. For example we can conveniently pass
around a set of pinned points (Section 3.12) as a shape with all points zero except the
pinned points.

3.13.1 Ignoring missing points during training

When aligning two shapes (Section 3.4), missing points must be ignored when calcu-
lating the transform T . This comes into play when aligning the set of shapes during
training (Step 4 in Figure 3.1).

Missing points must be ignored when taking the mean of the points to calculate the
mean shape (Step 5 in Figure 3.1)

Missing points must be ignored when calculating the covariance matrix of the aligned
training shapes (Equation 3.7). So when calculating the covariance between two coor-
dinates we use only complete pairs and divide by the number of complete pairs. Strictly
speaking the resulting covariance matrix is only an approximate covariance matrix [48],
because the number of observations isn’t the same for all variables. An approximate
covariance matrix may have some negative eigenvalues—but this isn’t a concern when
training frontal models, because in practice only a small fraction (less than ten percent)
of the eigenvalues are negative, and then only slightly so, and besides we retain only
the most important eigenvectors for the shape model.

See also Section 5.5, which discusses how missing points affect the descriptor models
(as opposed to the shape models we are focusing on here).
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3.13.2 Missing points during the search

We don’t need it for applications in this thesis, but for completeness we mention that
in applications that must conform a shape with missing points to the shape model, an
extra step must be added to the algorithm in Figure 3.13. Before updating the model
parameters b = Φ−1(x − x̄) in Step 3, missing coordinates in x should be estimated.
This can be done most simply by replacing them with points from the mean shape.

3.14 Imputing missing points for training three-quarter views

Non-frontal faces tend to have significant numbers of missing points. Chapter 9 will
discuss models for non-frontal faces in detail. Here we discuss only how missing points
affect training of non-frontal models. Note that we are talking here about shape models
specialized to a limited set of face poses—for example a model specialized for right
three-quarter views.

Figure 3.16 shows the terms used for face poses and some of their synonyms. Our main
concern is with yaw. In-plane rotation (not illustrated) refers to rotations aligned to
the image surface. For frontal faces, in-plane rotation and roll are the same. These
terms will become more important in Chapter 9 which explores multiview models.

3.14.1 Frontal faces

In the training data for frontal faces, typically all or nearly all landmarks are visible.
(Why not all? To allow the model to cope with faces that aren’t strictly-frontal, we
include some slightly yawed training faces, like the face in Figure 3.15, thus some
landmarks may be obscured.)

In the subset of MUCT faces used for training the Stasm frontal model (the details are
in Section 8.9 on page 107), the outer eyebrow landmarks (illustrated in Figure 3.15)
are the most obscured of all points, but even they are missing in less than 2% of the
faces. About 1% of some nose landmarks are also missing. We can simply ignore these
points as described in Section 3.13.1.

Figure 3.16: Pose nomenclature.
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Figure 3.17: Obscured landmarks.

In this non-frontal view, the
yellow landmarks are obscured by
the nose or the side of the face.

In the convention used by the
MUCT data, the landmarks along
the right jaw aren’t obscured, be-
cause by definition they are on the
visible edge of the jaw. On the other
hand, the landmarks on the nose
and eyebrow are defined to be on a
specific point on the face, which is
obscured in this view.

3.14.2 Three-quarter faces

However, when building models for three-quarter views, a relatively large percentage
of faces will have missing points (Figure 3.17). In the MUCT three-quarter faces for
example, 81% of the faces are missing the outer-eyebrow landmark. Thus we need to
handle training sets that have a large number of obscured points.

There are at least two potential ways of circumventing this issue:

(i) We can completely ignore faces with any missing points. But this seriously de-
pletes the training set.

(ii) We can redefine the shapes for use in three-quarter faces by defining a smaller set
of points, and build a model with shapes of say 60 points instead of 77 points.
But in the larger context of the software that is using the ASM, it’s usually more
convenient to have the same set of points for all the faces. (For full side-views
this becomes infeasible, but here we are concerned with frontal and three-quarter
views.)

Instead of the above techniques, our software augments the set of training shapes and
imputes missing points, as will now be described.

3.14.3 Augmenting the set of training shapes

We augment the central set of yawed training faces with faces that are slightly less
yawed. This gives a moderate increase in the range of poses supported by the model, but
more importantly it provides substantially more training data for the descriptor models.
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This matters because for non-frontal faces we typically have much smaller training sets.
(This is because we can’t double the size of the training set by using mirrored faces, as
we do with frontal sets. Also, as a practical matter if we are collecting high-resolution
training faces from the internet it’s much easier finding frontal faces than significantly
yawed faces.)

3.14.4 Imputing points for training the model

Using the augmented set of shapes, we impute the missing points. We do this as follows.
First we build an interim shape model, ignoring the missing points (as described in
Section 3.13.1). This yields an interim mean shape.

Then for each shape with missing points, we impute the missing points. This is done
by aligning the interim mean shape to the shape, then replacing missing points in the
shape with points from the aligned mean shape. (Stasm version 4.1 imputed missing
points by predicting their position using the interim shape model, but the additional
complexity of that approach isn’t needed.) No shape in this new training set has
missing points, and we use this new set instead of the original set to build the final
shape and descriptor models.

This approach seems to work well in practice. Other approaches are certainly possible.
With larger training sets, such trickery may be unnecessary. We haven’t done rigorous
tests to determine the optimality of this approach. In particular, since all points are
imputed before building the final model, imputed points are given the same status as
other points in the final model. Instead, ASM search results may be better if during
the search we ignored points that were missing in a high percentage of training shapes,
and merely at the end of the search impute their positions using the shape model (as
described in Section 3.13.2).

3.15 Points obscured by glasses and hair

Points can be obscured in other ways, for example by eye glasses or facial hair. When
manually landmarking the MUCT faces, the human landmarkers estimated the position
of such points—they aren’t missing in the sense we have been using the word, because
they aren’t obscured by parts of the face. (Other ways of handling such points may
also make sense.)

When training the shape model these obscured points are treated like any other point.
However they are ignored when training the descriptor models (Chapter 5). This is
because even though their positions are correct, or close to correct, the image texture
at the point is essentially random (since for example the glasses may reflect anything).
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3.16 Distributions in shape space

The shape model (Equation 3.5) assumes that the variation in each direction in shape
space (after aligning the shapes) clusters around a single center (the mean shape), is
symmetrical, and decreases monotonically from the center. Thus this variance can
be adequately constrained simply by limiting b. Therefore it’s worthwhile examining
normality (Gaussianity) of the shape coordinates. Normality is sufficient (although
not necessary) for these assumptions, and under normality the shape model adequately
describes shape variation.

Facial features are determined by a host of factors, mostly genetic and age-related. Thus
by the Central Limit Theorem (and assuming additivity), we should expect approximate
normality in the position of facial features in aligned faces photographed under similar
conditions. However, variations in lighting, pose, and expression change the positions
in ways that make application of the Central Limit Theorem less appropriate.

The Stasm training set for the frontal model has 6006 training shapes with 77 points per
shape (Section 8.9 “Training the HAT ASM”). Thus we have 2 × 77 = 154 coordinates
per shape. The 6006 cases are sparse in this high-dimensional space, as would be
any feasible sample of shapes. It isn’t possible to infer with reasonable confidence
that a sparse multivariate sample like this is or isn’t drawn from a normal distribution
(e.g. Hastie et al. [45] Section 2.5). It’s nevertheless worthwhile plotting the distribution
of the points to look for obvious anomalies.

Figure 3.18: Landmarks shown
in Figures 3.19 and 3.20.
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Univariate distributions

We look first at the univariate distributions of some selected point coordinates in Fig-
ure 3.19. (Univariate normality is necessary but not sufficient for multivariate normal-
ity.) The points selected are shown in Figure 3.18. A limited set of points was chosen
so the plots aren’t too small on the printed page, whilst still being representative of all
points.

Figure 3.19 shows that the marginal densities of the points appear approximately nor-
mal. We do see some rather odd shaped bells, but we see these also in the top row
which shows reference samples drawn from a true normal distribution.

Joint distributions

What do the joint distributions look like? We can’t plot a 154 dimensional cloud, but
Figure 3.20 shows a scatter plots of some pairs of mouth coordinates. (Once again,
bivariate normality is necessary but not sufficient for multivariate normality.)

From the figure we can see that some point clouds aren’t symmetrical and ellip-
soidal. An example is the subplot shaded gray. (There is nothing especially unique
about this subplot; it’s just a representative example. It plots TopOfTopLipY versus
BotOfBotLipY, i.e., the y coordinates of the center of the top of the top lip and the
bottom of the bottom lip, illustrated in Figure 3.18.) We expect the vertical position of
mouth points to be correlated (since the points move together with the position of the
mouth), and in the gray subplot we indeed see the correlation. But we also see quite a
few outlying points on the lower left of the subplot, possibly because some mouths are
open and some closed.

For visual calibration of the reader’s eye, Figure 3.21 shows scatter plots of a sample
of 1000 points draw from a multivariate normal distribution with the same covariance
matrix (i.e, the empirical covariance matrix of the points in Figure 3.20). Note how the
distributions of these true Gaussian points tend to be more symmetrical than in the
previous graph.

Principal component distributions

Figure 3.22 shows scatter plots for the first eight principal components of the shapes.
And once again for visual calibration of the reader’s eye, Figure 3.23 shows scatter plots
of a sample of 1000 points draw from a multivariate normal distribution with the same
covariance matrix. Since these are principal components the correlations are zero.

There are a few anomalies in Figure 3.22. For example, the cloud in far right plot in
the top row doesn’t appear elliptical (an approximate “>” shape seems apparent).
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true gaussian gaussian sample 1
n = 6006

gaussian sample 2
n = 6006

gaussian sample 3
n = 6006

gaussian sample 4
n = 6006

gaussian sample 5
n = 6006

1 LTempleX 1 LTempleY 3 LJawNoselineX 3 LJawNoselineY 4 LJawMouthlineX 4 LJawMouthlineY

7 TipOfChinX 7 TipOfChinY 19 LEyebrowOuterX 19 LEyebrowOuterY 22 LEyebrowInnerX 22 LEyebrowInnerY

30 LEyelidX 30 LEyelidY 35 LEyeOuterX 35 LEyeOuterY 39 LPupilX 39 LPupilY

53 NoseTipX 53 NoseTipY 57 NoseBaseX 57 NoseBaseY 60 LMouthCornerX 60 LMouthCornerY

63 TopOfTopLipX 63 TopOfTopLipY 68 BotOfTopLipX 68 BotOfTopLipY 75 BotOfBotLipX 75 BotOfBotLipY

Figure 3.19: Marginal densities of some landmarks of the 6006 aligned training shapes
used for the Stasm frontal model.

For visual calibration of the reader’s eye, the first row shows a Gaussian bell
curve, followed by densities of some samples drawn from a Gaussian distribution. A
sample of 6006 observations was drawn, the same sample size as the rest of the plots.
Note the dents in the bell in some of these samples, even though they are from a true
Gaussian distribution.

The following rows show the densities of landmark positions from the aligned
training shapes used in the Stasm shape model.

In all plots the width of the plot is ±3 standard deviations. Figure 3.18 shows
the positions of these landmarks on a face. The suffixes X and Y indicate the x or
y coordinate. Densities were estimated using the default settings of the R density

function https: // stat. ethz. ch/ R-manual/ R-devel/ library/ stats/ html/ density. html .

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/density.html
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Figure 3.20: Scatter plots for some pairs of mouth points.

The gray subplot is used as an example in the text.

The correlation coefficient is printed in the top left corner of each subplot.

The red ellipses are at 2 and 3 standard deviations, assuming normality.

To limit overplotting, only 1000 of the 6006 Stasm training shapes are shown (al-
though all shapes were used to calculate the printed correlation coefficients and ellipses).

Figure 3.18 shows the position of these landmarks on the face.
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Figure 3.21: Reference scatter plots.

Scatter plots for 1000 points drawn from a multivariate normal distribution
with the same covariance matrix as the previous graph.
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Figure 3.22:

Scatter plots for the first eight principal components of the aligned shapes.

The red ellipses are at 2 and 3 standard deviations, assuming normality.

To limit overplotting, only 1000 of the 6006 Stasm training shapes are shown
(although all shapes were used to calculate the ellipses).
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Figure 3.23: Reference scatter plots.

Scatter plots for 1000 points drawn from a multivariate normal distribution
with the same covariance matrix as the previous graph.



3.16 Distributions in shape space 54

Comments on the distributions

Summarizing, while it cannot be said that the shape data for the frontal model is
Gaussian, it as at least somewhat Gaussian. Many alternatives to the classical shape
model have been invented to handle deviations from normality. An example is the model
of Kirschner and Wesarg [58], who replace the principal-component shape model with
a model which minimizes combined image energy and shape energy, using “Distance
From Feature Space” [85] as shape energy. Some other alternatives were mentioned on
page 24 of this thesis, and Chapters 8 and 9 will mention some more modern approaches.



Chapter 4

Before the search begins

This chapter describes how we prepare the search image and position the start shape
before the ASM search begins. These preliminaries don’t seem to be explicitly de-
scribed elsewhere in the literature (other than in the Stasm manual [78], and there only
partially). Given their importance for accurate landmarking in our models they are
described in some detail below. The ideas in this chapter will be extended when we
consider multiview models in Chapter 9.

4.1 Adding a border to the image

Stasm uses the OpenCV face detector [66, 87] to find the face before the ASM search
begins. This detector often fails if the face is near the edge of the image, which is
frequently the case in cellphone “selfies” for example. To counteract this, our software
adds a 10% border to each edge of the image (Figure 4.1).

With this border the face detector fail rate on the BioID set [2] goes from 3.3% down
to 0.7%. However, this larger image does make face detection slower, because there is
44% more image area (1.2× 1.2 = 1.44).

4.2 Detecting the eyes and mouth

We need the position of the eyes and mouth to rotate the face upright and to position
the start shape before the search begins.

The OpenCV eye and mouth detectors [14] used by Stasm aren’t too trustworthy. They
will sometimes make false positives or fail to detect eyes. This is probably true for any

Figure 4.1:
left Face is too near the edge—

face detection fails.
right Artificial border added—

face is now detected.

(Face from the BioID set [2,52].)
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pure Viola-Jones eye or mouth detector—eyes and mouths are easily confused with
other objects—and so some scaffolding is needed around the detectors for best results.
To mitigate problems, we apply these detectors to only a limited area of the image, as
shown in Figure 4.2. We search in the green rectangle for the left eye, but consider the
detection valid only if the center of the detected eye is in the inner yellow rectangle.
This helps minimize false positives on the eyebrows. If multiple eyes are detected, we
choose the largest eye.

Similar considerations apply to the right eye and mouth (Figure 4.3). We also check
that the left and right eye rectangles don’t overlap by more than 10%, which would
indicate a false positive.

The positions of the inner rectangles are fixed relative to the face detector rectangle.
These positions are determined from the training data. If a different implementation
of the face or feature detectors is used, the positions of the rectangles have to be
redetermined.

Figure 4.2: Detecting the left eye.

The big rectangle is the face detec-
tor rectangle. Also shown is the
detected eye.

We search for the left eye in the left
eye search area, but consider it valid
only if its center is in the inner search
rectangle. This eye just squeezes in.

The same rectangles are used for the
right eye, except that the green search
rectangle is shifted to the right.

Figure 4.3: Detecting the mouth.

The big rectangle is the face detec-
tor rectangle. Also shown is the
detected mouth.

We search for the mouth in the mouth
search area, but consider it valid only
if its center is in the inner search
rectangle.
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4.3 Rotating the face upright

The descriptors used by our software assume that the face is upright, and therefore
we must rotate the image so the search face is upright. (Classical one-dimensional
descriptors are rotated to align with the edge of the shape, but 2D gradient and HAT
descriptors aren’t rotated for alignment, thus uprightness is important.) Forcing the
face upright also made for a better start in old versions of Stasm, before we used the
eyes and mouth to position the start shape (Figure 4.4).

After detecting the face, our software therefore also detects the eyes (as described in
the previous section). It then rotates the image so the detected eyes are horizontal.
For efficiency we extract the region of the image around the face rectangle, and work
with only that region, not the whole image. To minimize preprocessing, the image is
rotated only if the eye-angle is greater than 5 degrees. If either eye isn’t detected the
image is left as is.

Even with the scaffolding described in the previous section, the eye and mouth detectors
will still sometimes make false positives (e.g. detect an eyebrow instead of an eye) or false
negatives (fail to detect an eye, possibly because the eye isn’t in the search rectangle).
In these situations the face won’t be rotated upright correctly, making the ASM’s job
more difficult and mispositioned landmarks more likely.

The training faces aren’t rotated, because in the MUCT data used for training the faces
are already approximately upright. In this data there is some random minor tilting of
the subject’s faces that (we hope) assists the model learn how to handle minor rotational
variance.

This section is concerned mostly with models for more-or-less upright frontal faces
without large rotations. Chapter 9 takes these ideas further for faces with more varied
poses.

Figure 4.4: Start shapes
In these two examples
the start shape is aligned
to the face detector box.

Left Start shape on
the original face.

Right Start shape
after first rotating the
image so the face is
upright.
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4.4 Positioning the start shape

Alignment of the start shape is important for good automatic landmarking, at least for
“difficult” faces. An ASM search often won’t recover from a poorly positioned start
shape.

4.4.1 Aligning to the face detector

The classical ASM generates a start shape by aligning the model mean shape to the
face detector rectangle. During training, the model learns the optimal mapping of the
mean face to the face detector rectangle. After the face has been detected the start
shape is generated by mapping the mean face onto the detector rectangle (Figure 4.5).

In practice landmarking accuracy is marginally improved if the start shape is reduced
slightly in size (5%) before the ASM search begins, probably because this reduction
makes it less likely that the background outside the face will be mistaken for part of
the face.

Figure 4.5:
Generating the
start shape with the
face detector box.

On the left is
the mean face with
its optimum posi-
tion in the face box
determined during
training.

Figure 4.6:
Generating the
start shape with the
detected eye and
mouth positions.

The mean shape
is on the left. Its
eyes and mouth
are aligned to the
detected eye and
mouth positions.
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Figure 4.7: Different methods for
positioning the start shape

Note especially the offset of the
gray curve from the top axis on the
top right of the graph. This indi-
cates the percentage of catastrophic
failures when only the face detector
is used for positioning the start shape.

The figure shows fits by the multiview
model (Chapter 9) using the ec68
measure on the Helen test set [61].
Please see Figure 9.12 on page 130
for details of the test set up.

4.4.2 Aligning to the eyes and mouth

Automatic landmarking accuracy is better if the start shape is aligned to the detected
eyes and mouth (instead of just aligning it to the face detector box as described above).
We do this by aligning the triangle formed by the eyes and mouth in the mean shape
to the eye-mouth triangle of the face in the image (Figure 4.6). If the mouth isn’t
detected we estimate its position from the eyes and face detector rectangle. If an eye
isn’t detected we fall back to using the face detector rectangle as described in the
previous section. Other approaches may also make sense.

Jumping the gun a little by using the multiview model that will be described in Chap-
ter 9, Figure 4.7 shows how different start shape alignment techniques affect fits on the
Helen test set [61]. Notice how the alignment technique especially affects the “difficult”
faces in the upper percentiles of the error distribution.

4.4.3 User initialization

In some applications, as an alternative to using face and eye detectors, the user manually
pins several key points on the face. For example, we may require the user to initially
pin the eye and mouth corners (possibly as a fallback method if the face detector or
automatic landmarker fails). We generate the start shape by using these four key points
to align the mean shape to the face in the image. If necessary the user can then further
interact with the image to adjust points, as described in Section 3.12.

The face’s pose can also be estimated if an additional key point (say the tip of the nose)
is also manually pinned to give depth information. From these key points the face’s
yaw can be estimated using say a MARS model (Section 8.8) built by regressing the
ground-truth yaw on the key points in the training shapes.
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4.4.4 Stacking models

One way of better positioning the start shape is to run two ASM searches in series,
using the results of the first search as the start shape for the second search [82].

Although this technique was found to give better results in older versions of Stasm, for
the HAT models introduced in this thesis (Chapters 8 and 9), stacking doesn’t improve
overall landmark accuracies. This probably because HAT descriptors perform better
than 2D gradient descriptors and thus can recover better from a poor start shape, and
because the methods described above for aligning the start shape work better than in
older versions of Stasm.

4.5 The eye-mouth distance

Stasm defines the eye-mouth distance as the distance from the centroid of the pupils
(the mean position of the two pupils, which is near the top of the nose) to the bottom
of the bottom lip.

The eye-mouth distance of the search face is estimated from the start shape; the eye-
mouth distances during training are taken from the manual landmarks. If the pupils
or bottom-of-the-bottom-lip landmarks aren’t available, we use nearby points as surro-
gates. In the XM2VTS set ([18, 72]) of neutral frontal faces, the ratio of the median
eye-mouth to interpupil distance is 1.3.

Other definitions of the eye-mouth distance are also suitable. In retrospect it may have
been better to use the outer eye-corners instead of the pupils, since the eye corners are
generally more visible and stable with respect to the rest of the face.

4.6 Scaling the face to a fixed eye-mouth distance

Before the search begins, we scale the image so the face has a fixed eye-mouth distance.
The same scaling is used when training the model. The principle here is that the
same region of the face should be covered by the descriptors during searching as when
training, up to variations in pose and (often substantial) variations in face shape.

Stasm normalizes to an eye-mouth distance (Section 4.5) of 110 pixels. This particular
value is mostly for historical reasons and may not be optimal. This distance is funda-
mental in that if it is changed, many other model parameters must also be redetermined
(by selecting the best parameter value from a range of values on a parameter-selection
set). For example, the number of pixels covered by the descriptors must be re-optimized.

Historically the inter-pupil distance was used for scaling, but with yawed faces the
inter-pupil distance is no longer suitable (because inter-pupil distances decrease as the
subject’s head is yawed).



Chapter 5

Descriptor models

Recall that the job of the descriptor models is to take an approximate face shape and
produce a better shape by descriptor matching at the tentative positions of landmarks.
Before that process begins we first initialize the ASM search by positioning the mean
face on the image using a global face detector (Figure 5.1). We then alternate the
descriptor and shape models as described earlier (and summarized in Figure 2.4 on
page 19).

A model descriptor is a template that captures some distinguishing quality of the image
feature in question. It’s a short signature that is unique to that feature. The template
for say the outer corner of the left eye should match only that feature and no other,
irrespective of the face in question, its pose, expression, makeup, or lighting. In reality
no model descriptor is completely reliable.

This chapter first describes the 1D gradient descriptors used in the classical ASM [23].
(One-dimensional descriptors are usually called profiles, but we use the term “descrip-
tor” in this thesis to situate them in the context of other kinds of descriptor.) This
chapter then describes 2D gradient descriptors. Chapter 8 will introduce “HAT” de-
scriptors, after a diversion for a few chapters to discuss model evaluation and face
databases.

Figure 5.1: The mean face (yellow) posi-
tioned over a face at the start of a search.

In this example it so happens that the
nose and mouth are already positioned quite
accurately in the start shape. The eyes are
badly positioned. (This is a 68-point start
shape positioned on a BioID face [2] with a
face detector.)

The image intensity under the white
vectors is sampled to form 1D descriptors.
The descriptors are orthogonal to the
current shape, and are shown here centered
on the current position of the landmark.
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Figure 5.2: Searching for a descriptor
match.

The top descriptor is the model mean de-
scriptor ḡ. The remaining descriptors are
descriptors generated during the search by
sampling the image at various offsets along
the whisker from the current position of the
landmark. The best match in this example
happens to be at offset 1.

In practice, the Mahalanobis distance of
the intensity gradient is used rather than the
simple skyline match shown here.

5.1 1D descriptors

Looking at the jaw in Figure 5.1, a straightforward approach for nudging a point to its
correct position on the jaw line would be to move the point to the strongest edge on the
whisker. That is, move the point to the maximum intensity gradient on the whisker.
This was the approach used in the “pre-classical” ASM [24]. (A whisker is a line at
the landmark orthogonal to the shape boundary. By image intensity we mean the gray
level, a value from 0 to 255. We don’t use color.)

But looking for the maximum gradient is a bit simplistic, especially for more the com-
plicated image structure internal to the face, where many of the landmarks aren’t
positioned on simple edges. We therefore adopt a pattern matching approach.

Instead of simply looking for the maximum gradient, we first build a template of the
gradient along the whisker—what the image “looks like” around the landmark in ques-
tion. This template forms the model profile or 1D gradient descriptor for the landmark.
This template is built during ASM training by averaging the gradient along the whisker
across all training images. A separate template is required for each landmark at each
pyramid level.

Then during the search for the best landmark position, we generate descriptors at
various positive and negative offsets along the whisker, and select the offset that best
matches the template (Figure 5.2). We typically use offsets up to ±3 pixels along the
whisker. This process is repeated for each landmark (as shown in step 4 in Figure 5.3)
before handing control back to the shape model.

5.2 Generating a 1D descriptor

In detail, the descriptor vector g at a point is generated as follows (Figures 5.4 and 5.5):

1. Place the descriptor vector along the whisker, centered on the point, as illustrated
in Figure 5.1.
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input image of a face

1. Locate the face in the image
2. Position the start shape on the face
3. repeat
4a. for each shape point
4b. for each offset along the whisker
4c. Generate a descriptor at the offset
4d. Measure the fit of the descriptor against the model
4e. Move the point to the offset that gives the best fit
5. Adjust the suggested shape to conform to the Shape Model
6. until convergence

output shape giving the x,y coordinates of the face landmarks

Figure 5.3: The ASM search algorithm, with expanded descriptor matching step.
This figure is identical to Figure 2.4 on page 19, except that
here we see more detail in step 4, the descriptor matching step.

2. Set each element of the descriptor vector to the image intensity 0. . . 255 of the
pixel under it.

3. Set each element to the intensity gradient, by replacing the element at each posi-
tion i with the difference between it and the element at i− 1.
(To avoid indexing off the vector when calculating the gradient of the first ele-
ment, we temporarily extend the vector to include an extra element before the
first element.)

4. Normalize the vector by dividing each element by the sum of the absolute values
of the elements. (If the sum is zero, skip this step.)

The classical ASM uses the 1D descriptors described above. A number of variations
of these 1D descriptors have been tried, but the above method works as well as any.
Gradients are used because they have been found to give better results than gray
levels or rates of change of gradient. Gradients are invariant to the overall light level.
Normalization helps make the descriptor invariant to changes of overall contrast at the
landmark.

5.3 Descriptor models

The descriptor model for a landmark consists of the mean descriptor ḡ and its covariance
matrix Sg. These are calculated from the training descriptors (one for each image) at
the manual landmark.

If the length of the descriptor is 9 (as in Figures 5.4 and 5.5), ḡ will have 9 elements,
and Sg will be a 9×9 matrix. If there are 77 landmarks and 4 pyramid levels, there will
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Figure 5.4: A 1D descriptor.

The current shape boundary is yellow.

The reddish area is the descriptor vec-
tor, along the whisker orthogonal to the
shape.

Figure 5.5:

How a 1D descriptor
is generated from image
intensities.

be 77 × 4 separate ḡ’s and Sg’s. (To reduce notational clutter, in this document we
don’t include suffixes on ḡ and Sg to indicate the pyramid level and landmark number.)

We need a way of calculating the quality of match between a search descriptor g and
the model mean descriptor ḡ. One way of doing that is to use Euclidean distances:

Euclidean distance =
√

(g − ḡ)T (g − ḡ) . (5.1)

However we get better results with Mahalanobis distances (readers unfamiliar with
Mahalanobis distances may want to visit the overview in Appendix B):

Mahalanobis distance =
√

(g − ḡ)T S−1g (g − ḡ) . (5.2)

Mahalanobis distances give more weight to elements of the descriptor that carry more
information (i.e., elements that vary less across the training set and are therefore be
more likely to be a reliable representation of the image gradient at the coordinate in
question). Mahalanobis distances also account for linear relationships between elements
(if two elements tend to vary together or in opposite directions, that covariance will be
taken into consideration).

Note that at each landmark the ASM looks only for the single best match in the
search region, and so we need be concerned only with the relative quality of match. A
disadvantage of this simple approach is that it doesn’t incorporate probabilities into
the model (which could be used for instance to weight the points during the search,
giving more reliable points more weight).
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Figure 5.6: Whisker directions.

The direction of the two red whiskers
is for the classical ASM.

The pale blue whisker uses ex-
plicitly specified “previous” and
“next” landmarks.

(These landmarks are from the
FGNET markup of the XM2VTS
dataset [18, 72].)

5.4 Whisker directions

In the classical ASM, the direction of a whisker is determined by the order in which the
landmarks are numbered, because a whisker’s direction at a landmark is determined by
the position of the previous and next landmarks. This direction can be rather arbitrary.

For example, consider landmark 48 in Figure 5.6. The previous landmark is 47, which
is the right nostril (in this 68 point set). The next landmark is 49 which is on the upper
lip. Compare the odd direction of the resulting whisker (shown in red) to that of the
whisker on the symmetrical landmark 54.

Instead of using the ordering of previous and next landmarks to determine whisker
direction, we can explicitly specify the landmarks to be used, and hence determine the
direction along which the landmark can be moved during the search. In Figure 5.6, we
specify landmarks 59 and 49, and the resulting whisker is shown in pale blue.

Explicitly specifying whisker directions like this gives slightly better search results (Sec-
tion 5.4.8 in [75]).

5.5 Missing points in the training data

Points may be missing in some faces in the training data (Section 3.13). When gener-
ating the covariance matrix Sg for a landmark during training, we skip these missing
points. The covariance matrix is thus an approximate covariance matrix, because the
number of observations isn’t the same for all variables [48]. Therefore it may no longer
be positive-definite (a property necessary for meaningful Mahalanobis distances, Sec-
tion B.3), but we force it so using the method in Section B.4.

We mention that when data is missing an alternative approach is to use iterative meth-
ods [6] for generating a maximum-likelihood covariance matrix that is positive-definite,
but the approach in Section B.4 is simpler and suffices for our purposes.

See also Section 3.13.1, which discusses how missing points affect the shape model (as
opposed to the descriptor models we are focusing on here).
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5.6 2D gradient descriptors

The classical ASM uses one-dimensional descriptors. Now we make the logical exten-
sion to two-dimensional descriptors [82]. Instead of sampling a one-dimensional line of
pixels along the whisker, we sample a square region around the landmark (Figure 5.7).
Intuitively, a 2D area captures more information and this information, if used wisely,
should give better results.

Note that 2D gradients aren’t used in Stasm version 4.0 and higher (they have been
superseded by HAT descriptors), so Sections 5.6 and 5.7 in this document apply only
to older versions of Stasm.

In detail, a 2D descriptor matrix at a point is generated as follows:

1. After centering the descriptor matrix on the point, set each element of the matrix
to the image intensity (0 . . . 255) of the pixel under it.

2. Replace each element by the intensity gradient using the convolution mask

0 −1 0
−1 2 0

0 0 0
(5.3)

In words: double the pixel’s intensity, then subtract the pixel above and the pixel
to the left.1 We temporarily extend the matrix to avoid indexing off its edge when
calculating the gradients at its left and top boundaries.

3. Normalize the matrix by dividing each element by the sum of the absolute values
of all elements. (If the sum is zero, skip this step.)

4. Apply sigmoid equalization by transforming each element x of the matrix as
follows:

x′ =
x

abs(x) + c
. (5.4)

The constant c determines the shape of the sigmoid. Figure 5.8 on the next page
shows some sigmoids with different values of c. Sigmoids compress big positive or
negative values but are approximately linear for input values near 0. This pulls
in outliers, which are likely to be noise, such as the bright spots on the nose in
Figure 2.5 on page 20.

1Although the term “gradient” is used as a shorthand for this convolution mask, this operation is
actually an addition of horizontal and vertical derivatives, not a gradient in the mathematical sense.

Figure 5.7:

left 1D descriptors.

right 2D descriptors
at the same points.
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Figure 5.8:

Sigmoids for different values of
the shape constant c.

When searching for the best position for the landmark, we displace the descriptor in
both horizontal and vertical directions around the current position of the landmark, and
move the landmark to the position that gives the best match to the model descriptor.

Just as for 1D descriptors, the descriptor model for a landmark consists of the mean
descriptor ḡ and its covariance matrix Sg, and we use Mahalanobis distances to calculate
distances (Section 5.3). For the purposes of the equations in that section and internally
in the software we treat the 2D matrix as one long vector by appending the rows end
to end.

Unlike 1D descriptors, we don’t rotate 2D descriptors to align with the shape bound-
aries. We must thus rely on the face being approximately upright like the training
faces. For this reason, we rotate the image so the face is upright before the ASM search
begins (Section 4.3).

Many variations of 2D descriptors have been evaluated, but the above descriptors were
shown to work well for landmarking (in a limited study) in Chapter 5 of my master’s
thesis [75]. It isn’t clear why the addition of horizontal and vertical derivatives (and
normalization by the absolute sum) outperformed other techniques such as using gradi-
ent magnitudes or normalization by Euclidean length, but this question is now perhaps
only of historical interest.

An example of the variations mentioned above is weight masking, which gives more
importance to pixels closer to the landmark (Figure 5.9). If there is enough information
in the training set such masking shouldn’t be needed, because Mahalanobis distances
automatically down-weight unimportant pixels (pixels with gradients that are highly
variable across the training data). This was found to be true at least for the face data
used in experiments in my master’s thesis.

It turns out empirically that we get slightly better fits if we use classical 1D gradient
descriptors on some landmarks, and 2D descriptors on others. More precisely, we use

Circular mask Gaussian mask

Figure 5.9:

Weight masks.

Elements of the descriptor matrix that
are closer to the center get more weight.
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1D gradient descriptors

(i) on the jaw and forehead landmarks at all pyramid levels,

(ii) on all landmarks at the coarsest pyramid level (level three, one-eighth full width),

and 2D descriptors everywhere else. See Section 8.5 for further discussion of this topic.

For efficiency, before the search begins at each pyramid level we precalculate the gra-
dients for the region of interest on and around the face. This method is faster than
calculating the gradients on an as-needed basis each time a 2D descriptor must be
generated.

5.7 Trimming the descriptor covariance matrix

The covariance between two pixels in a descriptor tends to be much higher for pixels
that are closer together. This means that for 1D descriptors, as we move away from
the diagonal of the covariance matrix, the magnitudes of the elements get smaller
(Figure 5.10). Intuitively then, we can trim elements that are too far from the diagonal,
i.e., clear them to 0. Empirically, good results are obtained by trimming matrix entries
that are more than 3 pixels apart.

Using trimmed covariance matrices makes landmark searches much faster. For 2D
descriptors, ASM search time is dominated by the calculation of Mahalanobis distances.
Representing the trimmed matrix as a sparse matrix, because most entries are zero,
means that we can calculate Mahalanobis distances quickly—far fewer additions and
multiplications are needed. In our software, a sparse matrix is represented by a n×3
array, where n is the number of non-zero elements in the matrix. The three elements
in a row of the array specify the row, column, and value of an element of the sparse
matrix.

In practice, we trim only 2D descriptor covariance matrices, because trimming 1D
descriptor matrices results in a negligible overall speed increase. The size difference
between the original and trimmed covariance matrices isn’t big enough. (For illustrative
purposes, Figure 5.10 shows the covariance of a 1D descriptor, where pixels that are
close on the image are on the matrix diagonal. For 2D descriptors in vector form, pixels
that are close on the image are in a grid structure in the covariance matrix, rather than
on the diagonal. Trimming involves clearing elements of the covariance matrix that

Figure 5.10:

Covariance matrix for a 1D descriptor.
The landmark at the tip of the chin is
illustrated.

The figure shows absolute values.
Bigger absolute values are darker.
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input a (possibly approximate) covariance matrix S

force S positive-definite if necessary (Section B.4 on page 153)
invert S
repeat

force S−1 positive-definite if necessary (Section B.4)
trim S−1 by clearing entries for pixels that are far apart

until the trimmed matrix S−1 is positive-definite

output the trimmed inverted covariance matrix S−1

Figure 5.11: Inverting and trimming a covariance matrix.

aren’t in this grid, rather than simply away from the diagonal, but the principle is the
same. See the function TrimCovar in the Stasm version 3.1 source code for details.)

Trimming results in a matrix that may no longer be positive-definite, a property neces-
sary for meaningful Mahalanobis distances (Section B.3). Thus we force the trimmed
covariance matrix positive-definite using the algorithm in Figure 5.11. Note that this
algorithm is needed only when training the descriptor models, not when searching for
landmarks.

5.8 Parallelization

During an ASM search, descriptor matching at each landmark is done independently for
each descriptor (Step 4 in Figure 5.3). Thus the algorithm lends itself to parallelization
across processor cores. In our software this is achieved with OpenMP [88]. In our
experience, OpenMP can sometimes offer substantial speed advantages, although these
may depend on the compiler in non-obvious ways—probably because modern compilers
can automatically generate code that does loop parallelization across cores, without
requiring explicit OpenMP or similar directives in the source code.

5.9 The number of landmarks

A straightforward way to improve the mean fit is to increase the number of landmarks
in the model (Fig. 5.12). Fitting a landmark tends to help the fits on nearby landmarks,
so results can be improved by fitting more landmarks than are actually needed. ASM
search times increase approximately linearly with the number of landmarks.

Details on Figure 5.12: The figure was constructed as follows from the XM2VTS [72]
set of manually landmarked faces. For a given number (from 3 to 68) of landmarks, that
number of landmarks was chosen randomly from the 68 in the XM2VTS test. With
the chosen landmarks, a model was built and tested to give one gray dot. This was
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Figure 5.12:

Mean error versus number
of landmarks.

Overall fits are better when
the model has more landmarks.

repeated ten times for each number of landmarks. The black line shows the mean error
for each number of landmarks.

5.10 The error surface

The left side of Figure 5.13 shows the region around the outer eye-corner of the left eye
in an example image. The middle figure shows the gradient used for the 2D descriptors
in this region.2 The right side shows the mean 2D descriptor—the mean gradient around
the landmark in the training images.

When searching for the best position of the a landmark, we generate 2D descriptors
in an area around the current position of the landmark. The Mahalanobis distance of
these descriptors from the model descriptor forms an error surface or fitness surface
above the image.

Figure 5.14 illustrates an example error surface. It shows how the distance varies for
descriptors sampled around the eye landmark in Figure 5.13. Ideally we would like to
see a bowl shape here with a single clearly defined minimum (like the gray bowl in
Figure B.2 on page 152). In reality the error surface is quite jagged.

Figure 5.15 shows the error surfaces for some landmarks on the image. If we averaged
these surfaces over many images we would start seeing the ideal bowl shape.

An ASM will typically yield slightly different landmark positions if we use the same
source image but at different resolutions. Similarly, if we apply an ASM to a mirrored
version of a face, the resulting landmarks typically won’t be an exact reflection of the
original landmarks (Yang and Patras [122] investigate this phenomenon). This lack
of invariance to scaling and mirroring is partially due to the roughness of these error
surfaces and the consequent multiple near-minima.

2As remarked in the footnote on page 66, these aren’t gradients in the mathematical sense; they
are the scalar result of a convolution mask.
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Figure 5.13: Left A region of an image. The manual landmark is shown in green.
Middle The “gradient” used for the 2D descriptors in this region.
Right The model mean descriptor for the landmark.

Figure 5.14: The error surface across the region of the image in Figure 5.13.

Both plots show the same surface, but represented in different ways. The plots
show the Mahalanobis distance of the model mean descriptor from image descriptors at
various offsets from the manual landmark.

The right plot is a plan view. Lower distances are darker. The green pixel is at
the manual landmark and the red pixel is at the minimum distance.

For illustrative purposes the figures show a large search area, but in practice
during the ASM search we actually search a smaller area.
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Figure 5.15: Error surfaces for some 2D gradient descriptors on a single image.

The numbers in [square brackets] in the title of each plot shows the x,y offset of
the minimum.

The plots were generated for 2D gradient descriptors at pyramid level 1 (eye-mouth
distance 55 pixels) using the MUCT 77 landmarks.



Chapter 6

Model evaluation

The previous chapter described descriptor models and we would like now to get to
HAT descriptors, the form of SIFT descriptors that are novel to this thesis. However,
before we can do that we need to take a diversion for a few chapters to discuss model
evaluation and face databases.

This chapter in particular discusses how we evaluate models by plotting fitting errors.
It also discusses the various definitions for these errors. Readers uninterested in these
engineering details can proceed directly to Chapter 8 “HAT descriptors”. Readers
unfamiliar with the need for independent training, tuning, and test sets may want to
first visit Appendix C, which is a more general overview of the datasets necessary when
building and evaluating models.

6.1 Graphs for comparing models

Assume we have a set of landmark fitting errors for a number of faces. For example,
we may have the mean error for each of 300 faces. In this section we look at different
ways of plotting such error values. (The next section will look at ways of measuring
fitting error.)

Figure 6.1 shows histograms of the 300 values. Histograms have an intuitive appeal,
but with different numbers of bins the plots vary substantially. There isn’t a way to
automatically choose the number of bins that is unambiguously “correct” (e.g. Venables
and Ripley [113] page 112). An additional problem is that when used to compare
models, the histogram plots become cluttered. On the left side of Figure 6.2 it’s quite
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Figure 6.1: Three different histograms of the same data.
The shape of the histogram depends on the number of bins.
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Figure 6.2: Three different ways of comparing two models.

difficult to tell which model is better, the gray shaded model or the red model.

Density plots are an alternative to histograms. The density plot in the middle of
Figure 6.2 is less cluttered than the histograms. But it’s still fairly difficult to determine
which of the two models has better performance—and would be even more so if several
models were plotted. The plotted curve will differ with different density estimation
techniques and bandwidths, and there isn’t a way to decide which of these is correct
for the given data (e.g. [113] page 126ff.).

Cumulative distribution plots don’t suffer from these disadvantages. The right side of
Figure 6.2 shows an example. The quicker the S curve starts and the faster it reaches
the top, the better the model.

In the example cumulative distribution plot we see that the black model performs better
on the whole than the red model. The red model does slightly outperform the black
model in the left part of the curve, but the black model does better on the more difficult
faces above the median.

Given a vector of errors errs with n elements, the pseudocode to draw such a curve is

x = sort(errs)

y = (1:n) / n

plot(x, y)

This is a plot of the Empirical Cumulative Distribution Function (ECDF), which is a
step function: for each step 1/n in the vertical direction, in the horizontal direction
we move to the next biggest error. The approximate bell shape in the density plot
translates to an approximate S shape in the cumulative distribution plot.

There are a few minor implementation decisions about how the curve is plotted con-
cerning interpolation between adjacent points, how ties are handled, etc. However,
these decisions have a negligible effect on the curve if there are enough values (say 30),
without many ties.

It can be helpful to draw horizontal lines at the 90th percentile and 50th percentile (the
median). Note that in the example the median for both models is almost identical. So in
this example merely quoting the median fits would be an inadequate way of comparing
the models.
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6.1.1 Compare models using the same test data

When comparing models, the same test data should be used for all models. This seems
obvious, but there are a few practical difficulties that tempt people to compare curves
in the same plot on different subsets of the data, typically when comparing their model
to curves published by other authors.

Sometimes all the faces in the original dataset are no longer available. For example for
copyright reasons the image files of the LFPW [7] dataset aren’t directly downloadable
from the LFPW site—just the web addresses of the files are provided. Since many of
these addresses are now stale, many of the images are no longer available, so people
tend to publish curves on subsets of the data. This becomes a problem if the same
figure compares curves on the full set or a different subset.

Faces that aren’t detected by the face detector shouldn’t be omitted (unless the same
faces are left out in all curves). The error value for faces that aren’t detected should
be taken as infinite. (Actually any value greater than the maximum on the horizontal
axis will give the same curve.) If non-detected faces are omitted, the worse the face
detector the better the model appears. This somewhat counterintuitive result is because
“difficult” faces tend to be filtered out because they aren’t detected.

Figure 6.3 shows an example that compares the same model on different subsets of the
BioID data. The black curve is for the full set of data. The other curves make the
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Figure 6.3: All the faces in the test set should be plotted. Leaving out faces or points
makes the curves incommensurate.
(This plot uses the me17 measure described in Section 6.2.1.)
The orange curve omits the eyebrow points.
The red curve is for only the first 300 faces.
The gray curve omits faces that weren’t detected by the face detector.
The black curve is the me17 for the full set of data. (It’s the same as the Stasm3 curve
in the top left plot of Figure 8.18.)
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model appear better than the black curve.

The same set of reference landmarks should be used as a basis for comparison in all
curves—for some well-known datasets there is now more than one set of reference points
(Section 9.6.3).

The face detector used by the model can have a substantial impact on landmark fitting
accuracies. For this reason, ideally all models being compared should use the same face
detector. However often this isn’t possible because different organizations use different
(often proprietary) face detectors.

Cross-validation is sometimes employed for measuring landmarking performance, but
its use is often ill-advised (Section C.3).

6.2 Performance measures

This section describes some measures used to measure the performance of automatic face
landmarkers. These compare the position of the automatic landmarks to the manual
landmarks. All the measures here are in use by various researchers, although sometimes
with different names.

The point-to-point error is the Euclidean distance in pixels between the point dis-
covered automatically by the ASM search and the corresponding manually-landmarked
reference point.

The mean normalized point-to-point error is traditionally defined as

me =
1

deye

1

n

n∑
i=1

di , (6.1)

where deye is the pupil-to-pupil distance in pixels on the manually landmarked reference
shape, n is the number of landmarks in the face, and di are the point-to-point errors in
pixels.

The word “traditionally” appears above because distances other than the inter-pupil
distance are also used to normalize the data, especially in recent years. For example
in Chapter 9, to compare results with other researchers that use a different standard,
we will normalize with the distance between the eye corners, using the ec51 and ec68

measures.

6.2.1 The me17 measure

Introduced by Cristinacce ([28] and [27] Section 6.1.4), the me17 is the mean point-to-
point error divided by the inter-pupil distance (Definition 6.1) over 17 standard points.
These 17 points are a subset of the BioID points [2]. Figure 6.4 illustrates.

Note that the me17 points are internal to the face, thus the measure doesn’t account
for landmarking accuracy on external points such as those on the jaw.
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Figure 6.4:
Left The BioID points [2]. The BioID faces were manually landmarked by David Cristi-
nacce and Kola Babalola [18].
Right The me17 points are a subset of the BioID points. All points are interior to the
face.

6.2.2 The pe17 measure and confusion in the literature

There is some confusion in the literature, as pointed out in e.g. Lindner et al. [67] Section
4.2.4. To help clear this confusion, and so we can study the details, we also give names
here to some additional measures.

The normalized point-to-point error of a point is

pe =
d

deye
, (6.2)

where d is the point-to-point error in pixels, and deye is the pupil-to-pupil distance in
pixels on the reference shape

The pe17 is a set of 17 normalized point-to-point errors. The same points are used as
the me17 measure. We emphasize that the pe17 is a set of 17 points—the points aren’t
averaged over the face. When plotting pe17 errors, the distribution of the individual
point errors is plotted, regardless of the face to which they belong. (Each point on
the graph represents one landmark, whereas in an me17 plot each point represents one
face.) Figure 6.5 is an example that plots the pe17s and me17s for the same model on
the same test data: the curves are incommensurate.

The confusion in the literature arises because people make the easy mistake of con-
founding the pe17 (individual errors) with the me17 (errors averaged over the face).
For example, Figure 8 in Belhumeur et al. [7] mixes up pe17 and me17 measures on the
same graph. Figure 6.6 is a marked up version of their Figure 8. Notice that the figure
uses the pe17 for the two left curves but the me17 for the other curves.
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Figure 6.5: Two different measure of fit
with the same model on the same data. The
curves aren’t comparable.

These results are for Stasm4 (Chap-
ter 8) on the BioID data. (The pe17

curve is identical to the black curve in
Figure 8.20. The me17 curve is identical
to the black curve in the top left plot of
Figure 8.18.)

It’s fairly easy to spot when a curve is for the pe17 and not the me17. The leftmost
point of a pe17 curve typically starts at a fit of very close to zero, whereas an me17
curve starts at about 0.02 or greater, because of the inherent uncertainty in manual
landmarks (Section 7.2). An me17 of zero would require that the automatic landmarks
match the manual landmarking noise in all 17 of the manual landmarks—which would
require severe overfitting to the manual landmarks. Both curves have somewhat of
an S shape (because the errors have an approximate bell shaped density distribution),
although the S tends to be more pronounced for me17 curves.

I personally favor the me17 over the pe17, for its historical lineage and because it allows
overall fits on faces to be easily compared.

Figure 6.6: Copy of Figure 8 in Belhumeur et al. [7]. The legend has been updated to
include an indication of which measure was used for each curve.
The pe17 and me17 measures are incommensurate, and shouldn’t actually be shown on
the same graph.
The papers referred to in the legend are Belhumeur et al. [7], Valstar et al. [112], Mil-
borrow and Nicolls [82], Cristinacce and Cootes [28], and Vukadinovic and Pantic [117].
See Figure 8.20 on page 115 for a comparison of pe17s for Stasm and the Bel-
humeur et al. model.
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6.2.3 Rounding

By historical precedent the estimated landmark positions aren’t rounded to integers
before calculating point errors. If they were rounded, the leftmost point on the pe17
distribution curve would typically hit the vertical axis above zero, since a portion of
the landmarks would have a zero point-to-point error.

Rounding typically has a very small or negligible effect on me17 curves.

6.2.4 The mem17 measure

Normalizing by the inter-pupil distance helps make the measure independent of the
overall size of the face. However, for datasets that include three-quarter views, normal-
izing with the inter-pupil (or similar transverse) distance is inappropriate—because as
a face turns to the side, the inter-pupil distance decreases.

For this reason, we define the mem17 measure. This uses the same points as the me17
measure, but normalizes by dividing by the eye-mouth distance (Figure 6.7). Stasm
defines the eye-mouth distance as the distance from the centroid of the pupils to the
bottom of the bottom lip (Section 4.5). Normalizing with the eye-mouth distance is
more universal than with the inter-pupil distance, because it’s appropriate for both
frontal and yawed faces. It’s not appropriate for pitched faces, although these are much
less common in real applications.

Another way of normalizing is to divide by the mean of the height and width of the
face’s bounding box [132], however this too will vary as the face’s pose changes. Also it
should be borne in mind that the size of this bounding box is subject to the substantial
unreliability of the reference manual eyebrow and jaw landmarks.

At the current time (2016) inter-pupil or similar transverse normalizations are still very
prevalent, even though they are inappropriate for the multipose datasets that are now
in common use.
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Figure 6.7: Two different measure of fit
with the same model on the same data.
The curves show the mean landmarking
error on faces at different yaws.

The me17 isn’t a good measure for
datasets with yawed faces. This is because
as faces turn the inter-pupil distance de-
creases and the me17 artificially increases.

These results are for the multiview
model (Chapter 9) on 3500 AFLW faces.
The mem17 curve here is identical to the
black curve in Figure 9.7.
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6.2.5 Other measures

The me17 and similar measures ignore points on the perimeter of the face, and give
equal weight to all included points. But points on the perimeter of the face do in fact
matter, and accurate location of some points is usually more important than others.
For example it’s usually more important to locate the corners of the eyes accurately
than the tip of the nose. Thus weighted measures become attractive.

For model parameter selection we have used weighted measures internally that include
points on the perimeter of the face. The weighting is anisotropic, because even if
locating the edge of the jaw (for example) is important, the precise position along the
edge doesn’t matter. There is a good deal of arbitrariness about the definition of such
measures, but they give a better idea of overall fitness than measures like the me17 or
measures that use all the points but give them equal weight.

6.3 Independent tests on Stasm version 3.1

In 2013 Çeliktutan et al. [15] made independent tests using all automatic landmarkers
available for download at the time. The version of Stasm at that time was version 3.1,
which uses 2D gradient descriptors (Section 5.6). As can be seen in Figure 6.8, by their
measures Stasm 3.1 performed well on these sets of frontal faces.

Given the discrepancy between these results and those claimed in some papers, a certain
amount of skepticism is warranted when reading comparative results in papers—and
even more so when developers don’t make their software available for independent
verification. It’s not unusual to find mistakes in papers comparing fitness curves, such
as plots of model fitness measured on test data that is contaminated with data used to
build the model (Appendix C).
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Figure 6.8: Relative performance of various automatic landmarkers.

Reproduced with permission from Figures 6 and 8 in Çeliktutan et al. [15]. Please see
that paper for details of the fitness measures used. For clarity in the current context,
the legends were updated and the color of the Zhu Ramanan curve was adjusted.

The curves are for Stasm version 3.1, Saragih et al. [102], Zhu and Ramanan [132],
Vukadinovic and Pantic [117], Valstar et al. [112] (same model as Figure 6.6), Uricar
et al. [111], and Everingham et al. [36]. The databases are the BioID data [2] and
Cohn-Kandade CK+ data [70].



Chapter 7

Landmarked face data

This chapter discusses some aspects of landmarked face data.

7.1 The MUCT database

There are a variety of downloadable manually landmarked databases. This section
describes the MUCT data [81] that was used for training the models in this thesis.

The MUCT data consists of 3755 images of 276 subjects of which 51% are female.
The mean inter-pupil distance is 88 pixels. All subjects were 18 or more years of age.
Subjects who wore makeup, glasses, or headdresses retained those for the photographs.
Subjects weren’t asked to evoke any particular facial expression. In practice this meant
that most were photographed with a neutral expression or a smile. The database was
created to provide more diversity of lighting, age, and ethnicity than similar landmarked
databases at the time (2009).

Figure 7.1:
Images of the
first subject
in the MUCT
data, show-
ing different
poses and
lighting.
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Figure 7.2: The five MUCT cameras and their relationship to the subject’s face.
Camera a is directly in front of the face, up to variations in height of seated subjects.

Ten different lighting setups were used, and each subject was photographed with two
or three of these lighting sets. Not every subject was shot with every lighting setup, to
achieve diversity without too many images.

The subjects were photographed against a blank background (Figure 7.1). Five cameras
were used (Figure 7.2) to get five poses for each subject (labeled a to e). No cameras
were located to the left of the subject, since those views can be approximated for
training purposes by mirroring the images from the cameras on the right. Each subject
was seated and faced camera a. Differences between the seated height of subjects and
natural variations in pose introduced some variation in their orientation relative to the
cameras. (Small variations like this probably help models trained on the data to handle
a wider variety of faces when searching for landmarks.)

7.1.1 Using the MUCT data for training

For training the models for the applications focused on in this thesis, we need faces
that are of predominantly medium or high resolution, and of good quality (as described
in Section 1.2 paragraph iii). Surprisingly, of the many downloadable multipose land-
marked databases currently available (2016), the MUCT database remains one of the
few that comes close to meeting these criteria. Most downloadable multipose databases
have too many low-quality faces (see the discussion in Section 7.3). Therefore, although
not quite ideal, the MUCT data was used for training the models in this thesis. (The
MUCT data is not quite ideal because the faces weren’t photographed in the wild and
the resolution ideally should be a bit higher.)

Details on how the data was partitioned for training the models are given in Figure 9.6
on page 123. In summary, the HAT frontal model (presented in Chapter 8) was trained
on the frontal or near-frontal abde poses. The three-quarter model (presented in
Chapter 9) was trained on the three-quarter or near-three-quarter bc poses.
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7.1.2 The MUCT 77 landmarks

The new models in this thesis were trained on the MUCT data with 77 landmarks.
This subsection gives a bit of background on the MUCT landmarking schemes.

The MUCT data was originally landmarked and published with 76 manual landmarks.
Up to small manual landmarking biases these are a superset of the 68 XM2VTS land-
marks. (Eight extra landmarks were added to the eyes.) Later we converted these
to 77 landmarks. This isn’t a superset of the original 76 landmarks, but most of the
landmarks are shared. (There are several figures in this thesis that illustrate these land-
marks, e.g. Figure 1.1 on page 10.) The 77 point set was used for training the models
in this thesis. This 77 point scheme also allowed the MUCT data to be incorporated
into a 77 point internal (unpublished) database that is closer to the ideal data mooted
in Section 7.3. Software routines to convert the 77 landmarks to other mainstream
landmark formats are provided with the Stasm software.

For the 77 point set some landmarks felt to be redundant in the original set were
removed (at the top of the nose, in the center of the mouth, and some landmarks along
the jaw). Forehead landmarks were added, but these turned out not to be very useful,
because the area where the forehead meets the hair varies too much across subjects.

7.2 Manual landmarking uncertainty

There is ambiguity in the position of most landmarks, even with the most careful manual
landmarking. Figure 7.3 shows some examples of this ambiguity.

This inherent noise, purely due to manual landmarking uncertainty, sets a lower limit

Figure 7.3: Inherent uncertainty in manual landmarking.

(a) Where is the corner of the eye in this low resolution image?

(b) The corner can be better estimated in a higher resolution version of the same
face. Ideally, manual landmarking should be done on high resolution images (whose
resolution can then be reduced if necessary). Even so, different people will make
different estimates of the position the corner of the eye.

(c) Where is the outer edge of the eyebrow? It’s impossible to say.

The inter-pupil distance is 34 pixels for the face in the left image (the same
distance as the smallest BioID faces), and 380 pixels in the other two images.
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for me17 values and similar measures. Figure 8.19 on page 114 shows an example face
where the automatic landmarks are as good as the manual landmarks, if not better.
The me17 of 0.195 on this example face is due to manual landmark uncertainty as much
as it’s due to automatic landmarking.

In the next few sections we perform some tests to investigate manual landmarking
uncertainty. Also of interest is the paper by Smith and Zhang [106], which discusses
transferring and combining manual landmarks from different datasets.

7.2.1 Re-marked BioID and MUCT points

To approximately quantize the manual landmarking uncertainty, we manually re-marked
four landmarks on the first 600 faces in the BioID and MUCT datasets. The objective
was to see how the new landmarks differed from the original manual landmarks [18,81].
(This study is similar to a study in the MUCT paper [81] which used a smaller sample.)

The four re-marked landmarks are the left eye pupil, the outer corner of the left eye,
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Figure 7.4: Manual landmarking uncertainty on the BioID and MUCT data.

The solid curves show distances between the original manual landmarks and manually
re-marked points.

The dashed curve is for reference. It shows me17s on the same 600 faces with
landmarks automatically located with the Stasm HAT model described in Chapter 8 .

For the 600 BioID faces, the mean inter-pupil distance is 56.4 pixels. Thus a
distance of 1/56.4 = 0.018 corresponds to one pixel.

For the 600 MUCT faces, the mean inter-pupil distance is 88.8 pixels. Thus a
distance of 1/88.8 = 0.011 corresponds to one pixel.
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the nose tip, and the outer edge of the left eyebrow. These four points were chosen
because the inherent uncertainty of manual landmarking for these points ranges from
small (the pupil) to big (edge of the eyebrow). (See Figure 9.17 on page 134, which
shows the relative error of automatic landmarks.)

We measured the distance between each of these re-marked landmarks and the original
manual landmarks, and divided by the inter-pupil distance. Figure 7.4 shows the dis-
tributions of these normalized distances. The little horizontal line at the start of the
curves is due to pixelation—the smallest non-zero distance between points is 1 pixel
(which gets divided by the inter-pupil distance).

The mean inter-pupil distance is 56.4 pixels for these 600 BioID images, thus a distance
of 1/56.4 = 0.018 corresponds to one pixel. The distributions indicate that for faces
like those in the BioID set, one can expect median manual landmarking uncertainties
of perhaps 3% of the inter-pupil distance, or about one and half pixels. The lowest
possible value for an me17 on this data seems to be about 0.02.

7.2.2 Re-marked XM2VTS points and the iBUG data

To further investigate landmarking uncertainty, we also looked at the reference land-
marks generated by the iBUG group. Section 9.6.3 on page 127 gives details on these
landmarks; here we just illustrate the difference between the iBUG landmarks [100]
and the original XM2VTS landmarks [18, 72], using the outer corner of the left eye
as an example. We mention that the MUCT eye-corner definitions are similar to the
XM2VTS definitions.

Figure 7.5 shows this difference. Also to be noted for this landmark is that the mean
horizontal distance between the iBUG and XM2VTS landmark is 2.8% and the mean
vertical distance is 1.4% (of the distance between the outer eye-corners). This discrep-
ancy in the mean positions implies that the iBUG landmark positions are biased with
respect to the original XM2VTS landmarks—the iBUG eye-corner landmark tends to
be above and to the right of the XM2VTS landmark.

As can be seen from the figure, the differences between the reference landmark positions
can be quite considerable. This doesn’t mean per se that one set is better than the
other. It’s just that different landmarkers have different ideas of what constitutes the
“corner” of the eye (which introduces bias), and there is also the inherent uncertainty
in manual landmarking (which introduces noise). An automatic landmarker trained on
one set of landmarks will suffer an apparent but artificial performance hit if measured
against a set landmarked with different biases.

7.2.3 Discussion on the landmarking uncertainty experiments

The above study isn’t comprehensive, but is enough to broadly characterize the nature
of manual landmarking uncertainty. The graphs could be extended in interesting ways.
For example, we could also compare re-marked landmarks on the sides of the face, where
inherent uncertainty is even greater. We could also compare re-marked landmarks on
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some of the popular in-the-wild databases (like the AFW [132], and LFPW [7] data).
The low quality and resolution of many faces in these databases means the manual
landmarking uncertainty would be greater than in the data graphed in Figures 7.4
and 7.5.

Summarizing, the figures in this section show that there is more uncertainty in man-
ual landmarking than seems to be widely assumed. There is both bias (caused by
different definitions of landmarks in different datasets, and by biases introduced by dif-
ferent human landmarkers) and noise (caused by the difficulty of manually pinpointing
landmarks). Manual landmarks aren’t the golden standard we’d like them to be.
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Figure 7.5: Reference landmarking uncertainty: differences between the iBUG
reference landmarks and the original XM2VTS reference landmarks.

For the outer corner of the left eye, the red curve shows the distance between
the iBUG reference landmark and the original XM2VTS reference landmark, divided
by the distance between the outer eye-corners.

The mean inter-pupil distance is 101 pixels for the 2360 XM2VTS faces, thus a
distance of 1/101 = 0.01 corresponds to one pixel.

Similar curves can be drawn for the other landmarks. iBUG reference landmarks aren’t
available for the MUCT data (used for training the Stasm models), but it’s likely that
the curves would be similar.

The gray curve is for reference. It shows ec51 fits w.r.t. the iBUG landmarks of
our multiview model on the XM2VTS faces. It’s the same as the gray curve on the left
side of Figure 9.12. The intersection of the curves at the median is coincidental.
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7.3 The “ideal” face database

The ideal face database depends on the applications for which the automatic landmarker
is intended. Training and test sets should contain representative data.

The question of what is “representative” is tricky, but as mentioned in Section 1.2, this
thesis focuses on the medium- to high-resolution faces typically processed by applica-
tions like automatic or interactive retouchers. Faces processed by these applications are
typically of good quality, or at least not of bad quality, and blurred or low-resolution
faces are unusual.

For our purposes the ideal data for building and testing the models should match
the requirements of these applications, with face dimensions and expressions roughly
matching those seen by the applications. Tuning a model for optimal results only on
difficult faces may adversely affect its performance on the bulk of the faces. To use an
analogy, in general one shouldn’t evaluate a high school by evaluating the performance
of only the most difficult students. Therefore the evaluation data shouldn’t have a large
proportion of blurred or low resolution faces (eye-mouth distances should be at least 80
pixels, and preferably much higher). The proportion of faces with extreme expressions
should be small, although smiles are important.

Also making blurred or low-resolution faces undesirable is the fact that the position of
landmarks is ambiguous in such faces (Figure 7.6). Testing against uncertain manual
landmarks introduces unnecessary randomness into the test results. The cumulative
distribution curves by which we compare models become less trustworthy.

The tuning and test sets should contain a sufficient number of faces to counteract over-
fitting (optimizing for the test set) and to bound sampling variation, especially in the
worst 5 or 10% of fits. We would recommend at least 600 faces, preferably more, so
there are at least 30 faces in the worst 5%.

As a practical matter, it’s best if there is only one face per image. If there is more
than one face in the original image, for each face the image should be reproduced
with a unique file name, with all faces blurred or masked except the face in question
(Figure 7.7). This alleviates issues with matching the multiple faces detected in an
image with reference faces. Testing is easier when each manually landmarked reference
face is uniquely tagged with the file name. This is especially necessary because different
face detectors return multiple faces in different sequences. (It helps if the detector
returns multiple faces in a predictable order, such as left-to-right and from top-to-
bottom within that.)

Although we have seen proprietary commercial datasets that do meet these require-
ments, no suitable commonly accepted public standard test set has yet emerged. The
BioID data [2] is well known, but its faces are frontal and were photographed in an
uniform office setting. For variety, faces should be collected from photographs taken
“in the wild”. However, for our needs most of the in-the-wild datasets that have become
popular in papers in the last few years have too many low-quality and low-resolution
faces. For example, the median eye-mouth distances in the AFLW [60], AFW [132],
iBUG [100], and LFPW [7] test sets are only 74, 90, 71, and 70 pixels respectively, with



7.3 The “ideal” face database 89

Figure 7.6: Low-quality images of faces.
Where is the position of the left eye corner (for example) in these faces? The manual
landmarking uncertainty is high relative to the face size.
Your PDF viewer or printer may smooth out imaging artifacts such as pixelation in
these images. These artifacts may be easier to see if the image is expanded in the PDF
viewer.
The images are from the 2013 300-W Challenge test set (Section 9.6.3). Figure 9.10
on page 126 shows landmarks fitted by the multiview Stasm model on these faces.

Figure 7.7: Extra faces in the image
should be masked so there is one face
per image file name. The face detector
returns the single face.
(This is image 3253427659 1 from the
Helen test set [61], with the left and
right faces masked.)

many of the faces in all these sets significantly smaller than those numbers.

Although the MUCT data is used for training models in this thesis, it too falls somewhat
short of being ideal, because the faces weren’t photographed in the wild and the median
eye-mouth distance of 111 pixels is too low for optimal manual landmarking. The faces
of the Helen data [61] are perhaps closest to what we would consider ideal (they have a
median eye-mouth distance of 222 pixels), although the designated test subset is a bit
small (330 faces) and one could quibble over the definitions and quality of the manual
landmarks.



Chapter 8

HAT descriptors

To summarize our presentation of descriptors so far, a descriptor for template matching
captures some distinguishing quality of the image feature in question. For example, a
descriptor might capture the nature of the outer corner of the left eye. Chapter 5 dis-
cussed 1D and 2D gradient descriptors, which take the form of a one- or two-dimensional
array with the same dimensions as the image region they cover; each element of the
array is a measure of the gradient at a pixel.

The previous chapters described existing ASM techniques (although those chapters also
presented a few novel ideas here and there). Now in this chapter we extend the state
of the art with Histogram Array Transform (HAT) descriptors. These descriptors are
better than gradient descriptors at matching only the desired feature (they have better
sensitivity) while avoiding the area around the feature (they have better specificity).

HAT descriptors are essentially the local image descriptors used as part of the SIFT
algorithm (Lowe [68]). Actually they are also similar to other orientation histograms
such as R-HOGs (Dalal and Triggs [29]). But since SIFT descriptors are the most well
known, we present HAT descriptors as a variant of SIFT descriptors. SIFT descriptors
in turn are derived from earlier techniques using histograms of image features, such as
those in Belongie et al. [8], Freeman and Roth [39], and Freeman [38].

8.1 Related Work

Numerous proposals have been made to replace the 1D and 2D gradient descriptors
described in Chapter 5. We mention just a few SIFT based schemes, emphasizing
earlier papers. We used the open-source SIFT code of Rob Hess as a reference [47].

D. Zhou et al. [129] use SIFT descriptors with Mahalanobis distances. They report
improved eye and mouth positions on the FGRCv2.0 database. Z. Li et al. [63] use
SIFT descriptors with GentleBoost. Kanaujia et al. [54] use SIFT descriptors with
multiple shape models clustered on different face poses. Belhumeur et al. [7] use SIFT
descriptors with SVMs and RANSAC. Y. Shi et al. [104] use SIFT descriptors in
hierarchical ASM models for medical images. Xiong and de la Torre [120] use SIFT
descriptors in their influential Supervised Descent Method paper. SIFT descriptors for
face data are also used in e.g. Querini et al. [94], Rattani et al. [95], J. Zhang et al. [126],
and L. Zhang et al. [127].
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8.2 HAT descriptors

This section describes HAT descriptors. Later sections will do some analysis and com-
parisons.

8.2.1 Gradient magnitude and orientation

The gradient magnitude at pixel coordinates x,y is a nonnegative scalar defined as

mx,y =
√

(ix,y − ix−1,y)2 + (ix,y − ix,y−1)2, (8.1)

where i is a two-dimensional image of gray pixels 0. . . 255. This measures the gradient
at the pixel relative to the pixels above and to the left of it. Other ways of defining the
gradient magnitude are also common [42]. Lowe’s SIFT paper [68] for example uses a
more symmetrical formula

mx,y =
√

(ix+1,y − ix−1,y)2 + (ix,y+1 − ix,y−1)2, (8.2)

but empirically in the context of ASMs, landmark accuracies with Definition 8.1 are just
as good. It has the minor advantages that it actually uses the pixel at the coordinate
in question and it “wastes” one less row and column of pixels at the image boundary.

The gradient orientation at x,y is

θx,y = atan2( ix,y − ix,y−1, ix,y − ix−1,y). (8.3)

The function atan2 is used instead of the usual mathematical function arctangent so the
signs of the arguments determine the quadrant of the result in the 0° to 360° circle [118].
With IEEE arithmetic, atan2 is defined to return sensible values if the first and/or the
second argument is zero.

We use degrees here, but radians can be used instead—it doesn’t matter as long the
units are used consistently. In our software 0° is due east, degrees are always in the
range 0 (inclusive) to 360 (exclusive), and degrees increase anticlockwise. Figure 8.1
shows some examples of gradients. (The anticlockwise rotation arises naturally using
the standard C++ functions because y increases as we go down the image.)

As is commonly done, we slightly abuse terminology and talk about a “pixel’s gradient”,
but pedantically a single pixel can’t have a gradient: the gradient is a property of the
area at and around the pixel.

Just as for 2D gradient descriptors, for efficiency we precalculate the gradients and their
magnitudes for the region of interest around the face. This must done at each pyramid
level, and is faster than calculating the gradients each time a HAT descriptor must be
generated.
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Figure 8.1: Example orientation histograms.
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8.2.2 Orientation histograms

An orientation histogram is generated from an image, or, in the ASM context from
a rectangular subregion of the image. The histogram consists of a number of bins
covering orientations from 0° to 360°. Each bin is a nonnegative scalar that measures
the “prevalence” of the corresponding orientation in the image region of interest. If the
number of bins is say 8, then each bin covers 360/8 = 45°. Bin 0 is for orientations of 0°
(inclusive) to 45° (exclusive), bin 1 is for 45 . . . 90°, and so on up to bin 7 for 315 . . . 360°.

To generate the orientation histogram for an image, we first clear all bins to zero.
Then for each pixel in the image we select the bin corresponding to the pixel’s gradient
orientation, and increment the bin’s value by the pixel’s gradient magnitude. Figure 8.1
shows some example histograms. Note that in the usual sense of the word, a histogram
merely keeps a count of the number of objects that fall into a bin, but here we also
include the object’s magnitude.

8.2.3 Histogram smoothing

If the image changes slightly its descriptor should also change just slightly. This
property helps make descriptor matching robust—small changes to the target image
shouldn’t cause large changes to its descriptors.

However, in the algorithm for histograms just described, a small rotation to the image
may cause a large change to the descriptor, as the orientations near bin boundaries
jump abruptly from one bin to another.

We thus modify the algorithm slightly. Instead of assigning each pixel to a single
bin, we use linear interpolation to apportion its gradient magnitude across two bins
(wrapping around at 360°). If a pixel’s orientation falls on the boundary between bins,
its magnitude gets shared equally between both. Only when the pixel’s orientation falls
exactly in the middle of a bin does it get assigned to a single bin.

8.2.4 Arrays of histograms

The orientation histograms just described could be considered to be descriptors in their
own right. However we get better results if we divide the image region of interest into
a coarse grid, and generate a histogram for each cell in the grid. Each cell covers a
portion of the rectangular image region (Figure 8.2). It is this array of histograms that
forms the Histogram Array Transform (HAT) descriptor.

The coarse grid provides a degree of spatial invariance, because the exact position of
an image feature in the area covered by the cell doesn’t matter—all pixels in that area
map to the same cell.

Remember that we rotate the image so the face is upright before the ASM search begins
(Section 4.3), and scale the face to a fixed eye-mouth distance (Section 4.6). This makes
the area of the face covered by the descriptor the same as in the training faces, up to
variations in pose and face shape.
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Figure 8.2: A HAT
descriptor is an array of
histograms.

An area in the image
maps to a cell in the
array: the histogram is for
that area.

In this example, a 19×19
array of pixels is covered
by a 4×5 histogram array.
(These are the dimensions
used by Stasm.)

8.2.5 Gaussian weighting

In order to give pixels at the center of the image region more importance than pixels
further away, we apply two-dimensional Gaussian smoothing to the gradient magnitudes
(Figure 8.3). This is done before forming the histograms. Specifically, a pixel’s gradient
magnitude is scaled by

exp
(
− const× dist2

)
(8.4)

= exp
(
− const× x2 + y2

(w
2
)2 + (h

2
)2

)
, (8.5)

where const is a constant determined empirically during model tuning and dist is the
normalized Euclidean distance 0 . . . 1 of the pixel from the center of the grid. The
second equation shows how dist is calculated: x and y are the pixel’s horizontal and
vertical distance in pixels from the center, and w and h are the image region width and
height in pixels. The denominator is just a normalizing constant so the weight at the
edge of the region is independent of the size of the region.

Empirically, the precise value of const isn’t important. Stasm uses a value of 2, which
weights magnitudes at the edge of the region by exp(−2) = 0.135.

Figure 8.3:

left A Gaussian weight-
ing mask.

right Weighting for dif-
ferent values of the constant
in Equation 8.4.
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Figure 8.4: Trilinear interpo-
lation. Each corner of the cube
represents a histogram bin.

A point in the cube is ap-
portioned among the eight
corners of the cube.

8.2.6 Trilinear interpolation

In the setup described above, a small change in the position of the image region may
cause a large change to the descriptor, as the mapping for pixels near cell boundaries
jumps from one cell to another. Using similar reasoning to the histogram smooth-
ing described previously, we therefore linearly interpolate, or “smear out”, a pixel’s
contribution across adjacent cells.

Together with the histogram smoothing, we now have a total of three interpolations
(horizontally and vertically across cells, and across bins within a histogram), or trilinear
interpolation (Figure 8.4). Although we (and Lowe) use the term “interpolation” here,
strictly speaking this is inverse interpolation because we are spreading out a point
among several points, not combining several points into one point. Calculation details
may be found in the function TrilinearAccumulate in the Stasm C++ code. Trilinear
interpolation is computationally demanding (i.e., it’s slow), but tests verify that all
three interpolations are necessary for optimum fits in ASMs (Section 8.6).

8.2.7 Normalizing the descriptor

Finally, we take the square root of each element of the descriptor vector and normalize
the resulting vector to unit length. We do this by dividing each element by the vector’s
Euclidean length. If all elements are zero, this step is skipped.

Taking the square root reduces the effect of extreme values such as the bright spots
on the nose tip in Figure 2.5 on page 20. SIFT descriptors in their original form use
a slightly more complicated scheme for reducing the effect of gradient extremes (based
on a threshold), but for ASMs we have found on our data that taking square roots is
effective, and slightly quicker. We used sigmoids for the same purpose with 2D gradient
descriptors (Section 5.6), but here a simple power transform like the square root can
be used because there aren’t any negative elements.

Normalizing to unit length increases invariance to changes in image contrast. Invariance
to the absolute illumination level is already achieved because we are using gradients,
not gray levels. Notice that we don’t normalize each histogram independently—thus
relative differences in gradients across cells are preserved.
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8.3 HAT descriptors contrasted to SIFT descriptors

HAT descriptors are essentially the local image descriptors used in the SIFT algorithm.
This section describes how they differ.

A crucial consequence of these differences is that HAT descriptors can be generated
much more quickly than the descriptors in the standard SIFT framework. Speed is
important because to locate the landmarks in a single face the ASM needs to evaluate
something like 20 thousand descriptors. (Using typical parameters: 77 landmarks × 4
pyramid levels × 4 model iterations × 4 × 4 search grid = 20k.)

8.3.1 No automatic selection of keypoints

The framework or context in which HAT descriptors are used (i.e., refining the position
of landmarks) differs considerably from that in which SIFT descriptors are used (i.e.,
discovering and matching keypoints [68]). Readers familiar with SIFT will be aware that
the overview of descriptors in Section 8.2 doesn’t mention this overall SIFT framework.

This framework first does a time consuming scale-space analysis of the image to auto-
matically discover which parts of the image are keypoints. For example, the corner of a
roof could be automatically determined to be a keypoint, making it possible to locate
the same corner in a different image of the same building, even if photographed with a
different resolution and from a different viewpoint.

In contrast, in ASMs the keypoints are predetermined—they are the facial landmarks.
We don’t search the face to discover which parts of the face are of interest. We already
know which parts of the face we are searching for.

8.3.2 No automatic determination of scale

This SIFT framework mentioned above also determines the intrinsic scale of each of
the keypoints. This is achieved with a sub-octave Difference-Of-Gaussians pyramid so
an image feature can be analyzed simultaneously at multiple scales.

In contrast, in ASMs the face is prescaled to a constant size before the ASM search
begins (Section 4.6), thus we don’t need SIFT’s automatic determination of scale. The
ASM descriptor patches are a fixed size, and we use a simple 4 octave image pyramid
with the search proceeding one pyramid level at a time, from coarse to fine resolution.

8.3.3 No patch orientation

In the SIFT framework once the intrinsic scale of a descriptor has been determined
there is an additional preprocessing step (omitted in Section 8.2): the local structure
of the image around the point of interest is analyzed to determine the predominant
gradient orientation, and the descriptor is formed from an image patch aligned to this
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direction. The orientation is computed by looking for peaks in an orientation histogram
(independently of the histograms in the descriptor array).

However, in our software before the search begins we rotate the image so the face is up-
right (Section 4.3). Thus the automatic orientation described in the previous paragraph
is unnecessary, and in our experiments actually reduced automatic landmarking accu-
racy. We also found it unnecessary to orientate the descriptors to the shape boundary,
as is done for 1D gradient descriptors and for the descriptors in some other automatic
landmarking techniques (e.g. Kanaujia and Metaxas [54]).

Some rotational variation will still remain—because not every face is the same, and the
eye detectors sometime give false positives on the eyebrows or fail to find eyes, causing
incorrect orientation of the start shape on the image face (Section 4.3)—and so we
must also rely on the intrinsic invariance properties of the descriptors. The trilinear
interpolation helps here.

8.3.4 Precalculation of the mapping from patch to histogram array

When generating a SIFT or HAT descriptor, each pixel in the patch must be mapped to
a position in the array of histograms. Calculating this mapping takes time, especially
for scaled and rotated patches, and must be done each time we generate a descriptor.

But HATs don’t use such scaling or rotation, and the mapping therefore depends only
on the histogram array size (4×5) and the patch size (19×19 pixels), which remain
constant through the ASM search. Thus we can precalculate the mapping indices just
once for all descriptors (or once per pyramid level if we use different patch sizes at
different pyramid levels). In our software this precalculation reduced total ASM search
times by 40%.

8.3.5 One-to-many versus many-to-one matching, and nearest-neighbors

In a typical application envisaged in Lowe’s SIFT paper, keypoints from a new image are
matched against a library of keypoints that were discovered in a previously-seen image
or images. As we discover a keypoint in the new image, we find its nearest neighbor
in the library—this is one-to-many matching. Use of a nearest-neighbor approach is
natural in this setting. After repeating this process for each keypoint in the new image,
we can then use the keypoints to recognize objects or stitch the images together, for
example.

The ASM search context is different. The ASM extracts descriptors around the tentative
position of the landmark. It matches these against a model descriptor, looking for the
best fit—this is many-to-one matching.

Use of a nearest-neighbors approach for matching descriptors in the ASM setting may
be possible in theory, but would probably be too slow and require too much mem-
ory. A straightforward implementation would store example descriptors from all the
training images. If we stored only the positive examples for say 6000 training images
(Section 8.9) we would need to store well over a million descriptors, requiring over
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400 megabytes. (Using typical parameters: 6000 training-images × 77 landmarks ×
3 pyramid-levels × 160 elements-per-descriptor × say 2 bytes-per-element = 443M.) For
optimum results using a nearest-neighbors approach, we would likely also have store
negative examples, and this would require several times the above amount of memory.
It may be possible to somewhat reduce these requirements by using nearest-neighbor
condensation techniques.

8.4 Descriptor caching

As we iterate the search around a point during an ASM search, we often revisit the
same image coordinates. Additionally, the search areas of nearby landmarks overlap,
especially at coarse pyramid levels, and this also causes the same coordinates to be
revisited. It thus makes sense to save the HAT descriptor associated with a coordinate
for reuse, since generating a descriptor is fairly time consuming.

In our software a hash table [26] is used to store descriptors (Figure 8.5). The table is
cleared before the search at each pyramid level. The hash key is a 32-bit word consisting
of the packed x and y point coordinates. As is the nature of hash tables, the time to
access a descriptor is constant, irrespective of the number of saved descriptors, except in
rare instances, if ever, where there is a hash key collision or container overflow. A trial
alternative implementation that stored the descriptors in an array directly indexed
on the pixel coordinates was slower, possibly because the memory required exceeds
processor hardware cache limits.

In practice we get a cache hit rate of over 65% (meaning that over 65% of the requests
for a descriptor can be satisfied by using a saved descriptor). Caching reduces search
time by a further 70%.

Figure 8.5: A hash table is used to save HAT descriptors for reuse. The hash key
consists of the image x,y coordinates packed into a 32 bit word.

This diagram is based on a Wikipedia diagram by Jorge Stolfi: https:

// commons. wikimedia. org/ wiki/ File: Hash_ table_ 3_ 1_ 1_ 0_ 1_ 0_ 0_ SP. svg .

https://commons.wikimedia.org/wiki/File:Hash_table_3_1_1_0_1_0_0_SP.svg
https://commons.wikimedia.org/wiki/File:Hash_table_3_1_1_0_1_0_0_SP.svg
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8.5 Partial use of 1D descriptors

Just as for 2D gradient descriptors (Section 5.6), it turns out that we get slightly better
fits if HAT descriptors aren’t used for all landmarks. More precisely, we use 1D gradient
descriptors

(i) on the jaw and forehead landmarks at all pyramid levels,

(ii) on all landmarks at the coarsest pyramid level (level three, one-eighth full width),

and HAT descriptors everywhere else.

This partitioning of landmarks between 1D and HAT descriptors was arrived at after
some basic experiments. Similarly to the analysis in Table 5.15 in [75], we evaluated
a couple of dozen different partitions based on pyramid levels and sensible subsets of
facial features (such as the sides of the face, the forehead, the eyes, and so on). A more
exhaustive analysis to determine the optimal partition wasn’t done, but would likely
result in only small improvements over the above partition, if any.

It’s interesting that humble 1D gradient descriptors give better overall results than HAT
descriptors for the exterior landmarks. This merits more investigation. The landmarks
on the edge of the face include more random background texture than the interior
landmarks. They are on the whole more difficult to place than interior landmarks,
both for human and automatic landmarkers (Figure 9.17). Other researchers such as
E. Zhou et al. [130] have also found it best to use quite different models for the exterior
and interior landmarks. Perhaps HAT descriptors with dimensions specifically tuned
for exterior points (and/or rotated to align with the face edge) could be coaxed to
outperform 1D gradients for the exterior points.

8.6 HAT parameter tuning

What are the best values for the various descriptor parameters when HATs are used in
ASMs? We have found that good results can be obtained with 4×5 histogram grids and
8 orientation bins. The entire descriptor thus has 4 × 5 × 8 = 160 bins. We use an
19×19 image region (Figure 8.6) and a value of 2 for the Gaussian weighting constant
(Equation 8.4).

With 19×19 image regions, for certain landmarks at coarse pyramid levels the edge
of the face may be reached (i.e., part of the descriptor will be off the face). This is
a potential problem if we train on images with uniform backgrounds (like the MUCT
data), because the model will learn to expect a uniform background, which won’t be the
case on the more varied images used when searching for landmarks. We haven’t done
a detailed analysis, but in practice this doesn’t seem to be an issue, possibly because
of the Gaussian downweighting at the edge of the patch.
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Figure 8.6: The 19×19 image region covered by the HAT descriptors at different
pyramid levels, after scaling the face to an eye-mouth distance of 110 pixels.

8.6.1 HAT parameters

The parameters above were determined empirically by testing against a parameter-
selection set (Section C.2). This internal set consisted of medium and high resolution
faces gathered from the internet. The parameters were determined using the complete
ASM at all four pyramid levels.

This section now examines the parameters for HAT descriptors in isolation, without the
shape model. For reproducibility, results are shown on the XM2VTS set (but we didn’t
actually use the XM2VTS results for parameter selection—the results are similar but
not identical to the results on the internal parameter-selection set we actually used).
See also Dalal and Triggs [29] for studies of the effect of different parameter values on
histogram grids.

Figure 8.7 shows the effect of changing the histogram grid width and number of cells. A
4×4 grid with 10 bins gave the best results with this setup. These parameters will vary
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Figure 8.7:

Effect of histogram cell grid
size and number of bins.

Measured at pyramid level 0
with a 19×19 image patch. The
plot shows the median me17 on the
XM2VTS data before correction
by the shape model.
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somewhat with different data. In the original SIFT paper, Lowe found that a 4×4 grid
with 8 bins was optimal. The effect of different parameters is less than a first glance at
Figure 8.7 might indicate—note the fairly small range of the vertical axis.

Details on the test setup: For each point in the graph, an ASM was trained on
the MUCT abde faces. (This is the same data that was used for training the standard
Stasm frontal model, Section 8.9.) We then ran this ASM on the XM2VTS data (all
2360 images) on the final pyramid level (full scale), but to isolate the effect of the
HAT parameters, excluded correction by the shape model. We used MARS models
(Section 8.7) to match descriptors. These were trained anew for each point in the
graph. We plot the median rather than the mean me17 (Section 6.2.1) because the
distribution of me17s is highly skewed.

Figure 8.8 shows the effect of changing the size of the image patch used for the descrip-
tor. The optimum value varies across pyramid levels (lower resolutions prefer smaller
patches), but we found that using a 19 × 19 grid at all pyramid levels gave best over-
all results. We tried using different patch sizes at different pyramid levels, but found
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HAT descriptor (page 95).

A value of 0.5 (square root)
was chosen for the final model.

Measured at pyramid level 0
with the same HAT parameters
as Figure 8.8.

that unnecessary for optimum fits, once the shape model has been applied. We didn’t
evaluate rectangular (non-square) patches.

Figure 8.9 shows that trilinear interpolation (i.e. orientation and spatial interpolation)
is necessary for optimum fits.

As discussed on page 95, before the HAT descriptor is normalized to unit length we
take its square root. Figure 8.10 show fit results over a range of exponents other than
square roots (with 0.5 being the square root chosen for the final model).

We don’t hope for definitive values for these parameters—just values that work well
enough on realistic data. Different face data will give different results, and no set of
face data can be called definitive. For example, we have discovered empirically that the
HAT model would give better results on the BioID data (but not on more varied faces)
if it were to use 10 instead of 8 histogram bins. Furthermore, the use of the median
as a test criterion could be questioned. Perhaps it’s better to use the 90th or 95th
percentile, with the argument that reducing bad fits is more important than excellent
median fits, especially if the median fits are already close to the manual landmarking
noise floor. However in practice the parameters selected using these alternative criteria
would be very close, if not identical.

8.7 Descriptor matching methods

Once we have the descriptor at an image location, we need a measure of how well the
descriptor matches the facial feature of interest. This section reviews some techniques
for descriptor matching, leading to the MARS models used in our software.

As in the classical ASM, at each landmark we look only for the single best match in
the search region, and so need be concerned only with the relative quality of matches.
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8.7.1 Euclidean distances

We want to measure how well the descriptor sampled from the image matches the facial
feature of interest. A basic technique is to take the Euclidean (root-mean-square) dis-
tance between the descriptor sampled from the image and the mean training descriptor
for the landmark. This approach gives equal weight to every histogram bin—but that
is inappropriate because not all areas of the region covered by the descriptor are equally
important. Furthermore, a high variance bin is likely to add more noise than informa-
tion. Looking at it from a distribution perspective, optimality of Euclidean distances
for this purpose requires that the covariance matrix of the bin values is diagonal (no
interaction between bins) with all elements of the diagonal equal (all bins have the same
variance in the training set).

8.7.2 Mahalanobis distances

Mahalanobis distances are used for comparing descriptors in the classical descriptor
model. When used for HAT descriptor matching, they give more important bins more
weight—a bin is considered important for matching if it has low variance in the training
set. Mahalanobis distances also account for (linear pairwise) interactions between bins.

The use of Mahalanobis distances assumes that the descriptors have an approximately
elliptical distribution, and thus their distributions can be defined by their means and
covariance matrices, with distance from the center measured as a quadratic form (Ap-
pendix B). The Mahalanobis distance is optimal to the extent that the distribution of
the bin values is Gaussian, but this can be at most only approximately true for data
that is bounded on one end (Figure 8.11).

Euclidean and Mahalanobis distances assume that there is a single unique center of
the distribution around which the points cluster in multidimensional space. That is,
they assume that for each landmark there is a single mean descriptor that character-
izes the landmark. This assumption isn’t always valid—surely it must be invalid for
landmarks on the inner side of the lips, because the area around the landmark will
be different if the mouth is open or closed, implying at least two different clusters of
descriptors (multimodality).

0.0 0.5 1.0 1.5 2.0 2.5

    bin 5
        (hist 0 bin 5)

0.0 0.5 1.0 1.5 2.0 2.5

    bin 10
          (hist 1 bin 2)

0.0 0.5 1.0 1.5 2.0 2.5

    bin 12
          (hist 1 bin 4)

0.0 0.5 1.0 1.5 2.0 2.5

    bin 13
          (hist 1 bin 5)

Figure 8.11: Non-normality is evident in the distribution of values across the training
set in example histogram bins.
Without the square root used when normalizing the descriptors (page 95) these would
be even more non-Gaussian (the square root pulls in the long right tail).
These examples are for the bottom left eyelid in the full scale image.
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Calculating the Mahalanobis distance is slow. It’s proportional to the square of the
number of elements in the descriptor—in our case 160 × 160 = 26k. Trimming as
described in Section 5.7 might reduce this number, but we’re still talking about a lot
operations.

To reduce dimensionality and noise we could use the Mahalanobis distance on a reduced
set of principal components of the descriptors. There are other related measures of
distance between histograms, such as the Hellinger distance (e.g. [3, 90]). We didn’t
explore these alternatives, but instead moved directly to the regression-based approach
described next.

8.7.3 Regression for descriptor matching

Another tack is regression. This approach creates a regression model for each landmark
that estimates goodness-of-fit for the landmark from any descriptor sampled from the
image.

To generate the model for a landmark, we first collect a training set of descriptors on
and around the “true” (manually landmarked) position of the landmark. These descrip-
tors are collected from the manually landmarked training images. The descriptors are
labeled with their distance from the true position (or alternatively simply labeled as 1 if
on the true position or 0 if not). We then regress the labels on the descriptors, to create
a model that predicts goodness-of-fit as a function of the elements of the descriptor.

There is a slight conceptual shift here because the descriptor model is no longer match-
ing against an explicit template descriptor. However this doesn’t change the basic mode
of operation inherited from the classical ASM—we still search in the area around the
point for the descriptor that best fits the model—it’s just that we use regression instead
of Mahalanobis distances for matching. This differs from approaches, also using regres-
sion, where the position of the landmark relative to the current descriptor position is
predicted (e.g. Lindner et al. [67]).

8.7.4 Decision trees

What form of regression is best for our purposes? One approach is to use decision
trees [11]. We found that trees give mediocre results in this application, but we present
a brief example anyway since they are a fundamental statistical learning technique.
Figure 8.12 shows a tree for matching the HAT descriptor at the landmark at the top
eyelid in the full scale image.

Decision trees are highly interpretable. In the root node at the top of the example tree,
if bin 58 is less than 1.5 we take the left branch; otherwise we take the right branch. We
progress down the tree in this manner until we reach a terminal node, which is labeled
with the predicted quality-of-match.

The bins and thresholds at each decision point are automatically selected by the model
training algorithm [109]. The training process first selects a variable (in our case a
histogram bucket, i.e., a range of gradients in a cell) and a value of that variable (i.e.



8.7 Descriptor matching methods 105

b58 < 1.5

b24 < 0.98

b78 < 1

b38 >= 0.69

b98 < 1.2

b44 < 0.83

42% 14% 1% 3% 17% 12% 11%

0.09 0.21 0.29 0.66 0.23 0.39 0.68

yes no Figure 8.12: Regression
tree [77] for HAT descriptor
matching.
The shaded terminal nodes
along the bottom show the pre-
dicted quality of match 0 . . . 1.
Also shown are the percentage
of observations falling into the
nodes.

the prevalence of that range of gradients in the area covered by the cell). The variable
and value are chosen to split the training data into the two sets that best partition
the response values (i.e., how well the descriptor matches the image feature of interest).
This first split forms the node at the top of the tree (in our example, bin 58 was selected
with a value of 1.5). To build the rest of the tree, this process is continued recursively
on each of the subsets formed by the first split.

8.7.5 Various forms of regression and MARS

What other forms of regression should be considered? Linear regression would certainly
be a first option. Linear regression does allow multimodality to some extent, because
a linear model can for example predict high fitness if say either bin 3 or bin 7 is full.
But linear regression assumes that the effect of a bin on the match is proportional to
its value. Also a straightforward application of linear regression makes the assumption
that it’s unnecessary to account for interactions between bins. These assumptions may
be simplistic given that we are looking for a pattern of pixels.

To test that there is enough data in reasonably sized training sets to make more compli-
cated regression assumptions, we trained Support Vector Machines (SVMs, e.g. [45,73])
for predicting fitness of HAT descriptors. SVMs did indeed outperform the other meth-
ods mentioned above. However, SVMs are too slow in this setting. The SVM at each
landmark typically has over a thousand support vectors—the sheer number of support
vectors for SVMs in this setting makes evaluation slow, because to evaluate the de-
scriptor at any point in the image we have to take the dot product of the 160-element
descriptor vector with each of these vectors (160 × say 1000 = 160k operations).

We thus turned to Multivariate Adaptive Regression Spline (MARS) models [40, 84].
MARS models give ASM results that are almost as good as SVMs, and are much faster
(Figure 8.13). In our software, MARS decreased total automatic landmarking time by
over 80%. The essential difference between MARS and linear models for our purposes
is that MARS automatically models non-linear relations. An overview of MARS will
be given in the next section.

We mention also that in our tests linear SVMs gave slightly worse fits than the RBF
SVMs we used above, with comparable speeds. Random Forests [10,65] gave not quite
as good fits and took about the same overall time (but we didn’t do extensive tuning
of Random Forests).
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Figure 8.13: Different forms
of regression for descriptor
matching.

On this data SVMs give the
best fits. MARS models give
almost as good fits and are much
faster

Distances were measured as
me17s on an internal test set on
full scale images before applying
the shape model.

8.8 An overview of MARS

Multivariate Adaptive Regression Spline (MARS) models were introduced by Jerome
Friedman in a 1990 paper [40]. After the release of Breiman et al.’s influential CART
book [11] in 1984, MARS was a response to the often poor performance of decision
trees on data that is continuous (as opposed to categorical). MARS has been shown
to perform well in diverse applications (e.g. [62,116]), although it’s apparently not well
known in the image processing community.

A clear description of MARS can be found on Wikipedia [119]. See also Hastie et al. [45].
and Friedman’s original paper [40]. Here we just give a brief overview of MARS by way
of an example.

The MARS formula to estimate the descriptor match at the bottom left eyelid in the
full scale image is

match = 0.026 1

+ 0.095 max(0, 1.514− b5) 2

+ 0.111 max(0, 2.092− b10) 3

+ 0.258 max(0, b12 − 1.255) 4

− 0.108 max(0, 1.574− b13) 5

· · ·

(8.6)

where the bi are HAT descriptor bins 0 . . . 159. There happen to be 17 terms in the
formula; we have shown just the first few. The MARS model building algorithm gener-
ated the formula from the training data. There is a similar formula for each landmark
at each pyramid level.

What distinguishes this formula from that of a linear model is that the variables (bins
in this case) enter the formula via the max functions instead of directly as they would
in a linear model. The max functions are characteristic of MARS and are called hinge
functions in this setting. Hinge functions allow nonlinear dependence on the value of a
bin, and contain the effect of a bin to a range of its values. The effect of two of the hinge
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Figure 8.14: Hinge functions showing the effect of bins 10 and 12 in lines 3 and 4
in the MARS formula on the previous page. From the plots we see that the estimated
quality of match is increased by low values in bin 10 and/or high values in bin 12.
From Figure 8.11, high values in bin 12 are uncommon. Low values are common but
uninformative.

functions is shown in Figure 8.14. The same bin can appear in different hinge functions
in the same formula, allowing complex non-monotonic regression surfaces (but always
piecewise linear).

MARS has included only certain histogram bins in the formula (there are 160 bins
but only 17 terms in our example). HAT descriptors lend themselves to this kind of
variable selection. The innate structure of the image feature makes some bins more
important than others. Furthermore, the trilinear interpolation induces collinearities
between nearby bins. When matching, it may therefore make little difference if we use
a bin or its neighbor. The MARS model building algorithm will arbitrarily pick one or
the other, depending on training sample noise. Once the bin is in the formula, the other
bin can be ignored as it brings little new information. Usually the final formula is so
short that evaluating it is quicker than it would be to say take the Euclidean distance
between two descriptors. Exploiting structure in the data like this it saves unnecessary
calculation and reduces noise from uninformative variables.

We compiled the MARS formulas as C++ code directly into our application. We per-
formed MARS model selection (i.e., optimization of the number of terms) not by using
the standard MARS Generalized Cross Validation [119] but by optimizing descriptor
match performance on a tuning set of faces, a procedure that more closely matches the
requirements of the model in our setting. With smaller training sets (less than a thou-
sand faces) our experience has been that linear models can perform as well as MARS.
MARS also allows interactions between variables, but interactions don’t appear to give
better fits in this setting unless large amounts of training data are available (more than
ten thousand faces).

8.9 Training the HAT ASM

The frontal model was trained on the 6008 frontal and near frontal images of the
MUCT abde subset. Mirroring was used to bring the number of faces from 3004 to
6008. (Figure 9.6 illustrates how this subset partitions the data. Section 7.1.1 explains
why the MUCT data was chosen for training.)
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It takes under three minutes to train this model on a 2.9 GHz processor. Parameter
selection (such as selection of the HAT parameters in Section 8.6) was performed on an
independent set of faces gathered from the internet.

We generated regression training data for the MARS descriptor models as follows. (This
regimen was reached after some experimentation but we don’t claim it’s optimal.) At
the landmark of interest in each training face, after scaling the face to the standard
eye-mouth distance of 110 pixels, we generated

(i) Three negative training descriptors at x and y positions randomly displaced by 1
to 6 pixels from the “true” (manually landmarked) position of the landmark.

(ii) A positive training descriptor at the true position of the landmark. To bypass
issues with imbalanced data, we duplicated this positive descriptor thrice so there
were equal numbers of positive and negative training descriptors.

We regressed on this data with the positive training descriptors labeled 1 and the
negative training descriptors all labeled 0, irrespective of their distance from the true
position of the landmark.

8.10 Why do SIFT-based descriptors perform well?

Surprisingly, in the literature there seem to be only a few scattered comments on why
SIFT descriptors perform well, without any extensive discussion. This section attempts
to summarize the reasons for their good performance. I hope a certain amount of arm
waving will be excused.

8.10.1 SIFT descriptors are based on gradients

SIFT descriptors are based on image gradients and inherit their good properties for
template matching. We briefly summarize these properties below.

Gradients are invariant to the overall level of lighting, since by definition they use the
difference of intensities, not absolute intensity.

After normalization of the descriptor (Sections 5.6 and 8.2.7), gradients are invariant
to linear changes in overall contrast.

Many studies have compared different convolution masks for use in descriptors. An
example is the comparison of 2D descriptors in Chapter 5 of my master’s thesis [75].
That study found that descriptors incorporating signed gradient information performed
best for ASMs.
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Figure 8.15: HAT descriptors for the landmark at the left eye-corner.
top left rectangle Mean descriptor over the frontal training set.
remaining images The descriptor of some training images.

The descriptors were extracted at the manual landmark after rotating the faces
upright and scaling them to an eye-mouth distance of 110 pixels.

Despite the variety of eyes some similarities can be seen between all the descrip-
tors. For example nearly all the histograms boxed in red have two distinct peaks in
approximately the same bins.
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8.10.2 SIFT descriptors allow some variations in features

We rotate the face upright and scale it to a fixed eye-mouth distance before the ASM
search begins, so the image region covered by a descriptor during the search is as similar
as possible to the descriptor regions in the training shapes. But even so, face images
differ substantially, and on different images there will be a wide variety in the relative
position and shape of image features in the immediate vicinity of the landmark.

However, the coarse grid of cells used in SIFT descriptors provides a degree of insen-
sitivity to this kind of spatial variation. The exact position of an image feature in the
cell doesn’t matter; all pixels in the cell area map to the same cell, up to interpolation.
Thus SIFT descriptors are insensitive to small changes in the face around the land-
mark. However, they still allow us to locate the landmark precisely using information
interpolated and combined across the cells.

Figure 8.15 shows some SIFT descriptors for the landmark at the left eye-corner. De-
spite the variety of face shapes around the eye-corner, some similarities can be seen
across all the descriptors.

The use of histograms is key, because it allows SIFT descriptors to aggregate gradient
information over the cell area. It might be an interesting exercise to measure the
performance of new types of descriptor that combine histograms with 2D gradient
descriptors (or other convolution descriptors, Section 5.6). Such a descriptor would be
made up of a coarse grid of histograms (as in HAT descriptors) measuring the prevalence
of the value given by a convolution mask (as in 2D gradient descriptors). However it
seems unlikely that such descriptors would outperform HAT descriptors.

In the SIFT paper Lowe mentions that the spatial invariance of SIFT descriptors is
similar to that of certain neurons in biological vision. These neurons respond to image
gradients at a particular orientation [34]. For these biological receptors, lab experiments
have shown that the gradient at the orientation of interest can be anywhere in a small
receptive region on the retina; the gradient doesn’t have to be at a precise location.

8.10.3 HAT descriptors allow use of more context around the landmark

Without conscious effort, as humans we intelligently use the context around a point to
precisely position the landmark. Computer descriptors also use this context, although
not as intelligently—but HAT descriptors can make use of a larger context around
the point than 2D gradient descriptors. They are better able to make use of the extra
information in the larger area, without being confused by the extra noise and variability
that comes along with that information.

For example, in the right side of Figure 8.16 although we are focused on the corner of
the eye, the HAT descriptor includes quite a large surrounding area. The 19×19 region
is bigger than the 13×13 (or so) region found to be optimal in this application for 2D
gradient descriptors ([75] Section 5.5.4).

Simply increasing the area for 2D gradient descriptors doesn’t help (and in fact degrades
performance) because for these descriptors the large variation in the image areas far
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Figure 8.16: Portion of the face covered by descriptors.
The descriptor patch sizes shown above were determined to be optimal when tuning the
models (with the faces scaled to an eye-mouth distance of 110 pixels).
Left 2D gradient descriptor.
Right HAT descriptor.

from the landmark tends to smother the usable information in those areas. On the other
hand, SIFT/HAT descriptors are relatively insensitive to this variation, as discussed in
the above subsection.

It’s also interesting to note from Figure 8.9 on page 101 that the optimum HAT patch
width is larger with spatial interpolation than without. (In the figure the two curves
with spatial interpolation bottom out after the other two curves.) That is, spatial
interpolation allows the descriptor to usefully incorporate more context around the
landmark—smoothing tends to increase the signal to noise ratio in the high variability
areas far from the landmark.

8.10.4 Error surfaces for SIFT descriptors are relatively smooth

The error surfaces for 2D gradient descriptors are quite rough and noisy (Section 5.10).
The trilinear interpolation used by SIFT descriptors makes for smoother error surfaces.
This interpolation prevents sudden changes as the descriptor moves over the image
surface during the search.

In general, smoothing of noisy error surfaces makes it more likely that the minimum is
closer to the true position (Figure 8.17). We hypothesize that this effect occurs during
landmark searches with SIFT descriptors.

It might be worthwhile measuring the effect of adding an extra step to explicitly smooth
the 2D error surface before finding the minimum. This might give small improve-
ments in landmarking accuracy—although its effect would probably be more notice-
able on 2D gradient descriptors than on HAT descriptors (which already have built-in
interpolation/smoothing)—and so such an experiment would be mostly of historical
interest.
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Figure 8.17: Smoothing makes
minimum-finding less susceptible to noise.
This is an artificial one-dimensional ex-
ample; for landmark finding we would
work in two dimensions across the surface
of the image.
The gray points are sampled from
f(x) = x2 plus noise. The black curve is
a smooth of the points [16].
The minimum of the smooth (dotted
vertical line) is closer to the correct value
of 0 than the minimum gray point (dashed
vertical line).

8.11 Results with the HAT model

The HAT descriptors presented in this chapter are incorporated into Stasm version 4.
This section compares Stasm version 4.2 (called Stasm4 in the figures) to version 3.1
(called Stasm3 ), which used 2D gradient descriptors. Recall from Section 6.3 that Stasm
version 3.1 itself performed well against other automatic landmarkers in independent
tests made by Çeliktutan et al. [15].

Figure 8.18 shows results using the me17 measure (Section 6.2.1) on four different
datasets disjoint from the training data. In all cases HAT descriptors outperform 2D
gradient descriptors. Tests using measures other than the me17 gave results similar to
those shown here.

The top left plot also compares Stasm to the Random Forest Regression Voting method
presented in Cootes et al. [20] and Lindner et al. [67]. The results in the latter paper are
to my knowledge currently the most accurate me17 results published on the BioID data.
Lindner et al. outperform Stasm, although above the median the distributions are close.
Their model takes 82 ms to landmark 17 points on a 2.9 GHz Xeon 5670 processor,
whereas Stasm takes 46 ms on 77 points on a similar(?) processor (Figure 8.21). However
Lindner et al. also present a reduced model that gives very slightly worse accuracies on
17 points at only 38 ms per image.

The fits on the left of the BioID curve are in the manual landmarking noise floor.
That is, the landmarking errors in the faces on the left part of the curve are due to
manual landmarking uncertainty as much as they are to automatic landmarking errors.
Figure 8.19 illustrates this. See also Section 7.2 which discusses manual landmarking
uncertainty.

Both versions of Stasm are limited to near-frontal views by their reliance on the OpenCV
frontal face detector, so are inappropriate for the Helen set [61] with its wider range
of poses, but HAT descriptors do substantially better (bottom right plot). In the next
chapter we will look at a multiview model with much better performance on this Helen
dataset.
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Figure 8.18: Stasm4 (HAT descriptors) versus Stasm3 (2D gradient descriptors).
HATs outperform 2D gradients.
These are me17 distributions on datasets disjoint from the training set. The datasets
are the BioID [2], XM2VTS [72], and PUT [55] sets, and the designated test set of the
Helen set [61].
Each plot includes the complete dataset (faces for which the face detector failed are
included with an me17 of infinity).

More extensive tests of our methods against other automatic landmarking techniques
(and not just against 2D gradient descriptors) are deferred until the next chapter, since
the frontal model in this chapter is just a stepping stone to the multiview model in
the next chapter. To avoid duplication, we also defer showing photographs of example
landmarked faces until the next chapter (Section 9.6.2).

8.11.1 Results with the pe17 measure

Figure 8.20 compares Stasm to Belhumeur et al. [7] using the pe17 measure (Sec-
tion 6.2.2). On this frontal set, the Stasm4 results are practically identical to those
of Belhumeur et al., but Stasm is much faster (their landmarker takes on the order of
a second per landmark, whereas Stasm processes the entire face in less than 50 ms,
Figure 8.21). As mentioned for the previous graph, the fits on the left of the curve are
in the manual landmarking noise floor.
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Figure 8.19: Landmarks on the BioID face with the best fit by Stasm4. (This fit is the
leftmost point on the black curve in the top left plot in Figure 8.18.)

The me17 is 0.0195. This is a mean error of about one pixel (0.0195× 49.3 = 0.96
pixels, where 49.3 is the inter-pupil distance of this face).

In this image, most (if not all) discrepancies between the manual and automatic
landmarks are within manual landmarking uncertainty.

For example, the automatic landmark (yellow) on the right pupil is closer to the
correct position than the manual landmark (red). Most people would say this is also
true for the landmarks on the outer eye-corners.

To my knowledge, although several techniques outperform Belhumeur et al. in this test
(e.g. Cao et al. [13]), they do so by no more than a hair, and all are far more complicated
than Stasm. It should be remembered however that the BioID faces are frontal and
thus well suited to the Stasm frontal model.

8.11.2 Search times

Figure 8.21 compares search times. Stasm4 is faster than Stasm3. The times increase
as we go rightwards because the images and faces are larger: face detection takes longer
on larger images, and it also takes longer to scale larger faces to the standard eye-mouth
distance before the ASM search begins.
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Figure 8.20: Stasm versus
Belhumeur et al. [7] on the
BioID data. See also Figure 6.6.

Note that this plots the pe17

measure (not the me17 used
in the previous graphs). See
Sections 6.2.1 and 6.2.2 for
definitions of these measures.

Faces for which the OpenCV
face detector failed are included
with pe17s of infinity.

8.11.3 Details on the test setup

The Stasm curves in Figures 8.18 and 8.20 include all faces in the test sets. Faces not
found by the face detectors are included with an me17 of infinity (Section 6.3). The
times in Figure 8.21 don’t include faces for which the face detectors failed.

For the PUT set several extra landmarks needed for calculating the me17 were manually
added to the faces before testing began.

For the Helen set we approximated the pupil and nose points from neighboring points,
introducing noise into the results (but equally for both implementations). The pupil
position in the Helen faces was taken to be the mean of the eye-corners. The Bel-
humeur et al., Cootes et al., and Lindner et al. curves were transcribed from figures in
their papers. All other curves in this chapter were created by running software on a
local machine.

Stasm versions 3.1 (2D gradient descriptors) and 4.2 (HAT descriptors) were used for
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datasets as Figure 8.18.
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these tests. Both versions were trained on the MUCT data, and both use the OpenCV
frontal face and feature detectors. Stasm version 4.2 is a 64-bit executable file (as
opposed to a 32-bit executable), and uses OpenMP parallel processing (Section 5.8). For
a more direct comparison of HATs to 2D gradient descriptors without these additional
implementation differences, please see Milborrow and Nicolls [83]. The conclusions in
that paper are the same as those here, but the HAT model here is better tuned.

Stasm is open-source and includes tools to reproduce these results.

8.12 Discussion

This chapter shows that HAT descriptors together with MARS work well with ASMs.
HAT descriptors outperform gradient descriptors. HAT descriptors with MARS bring
significant computational advantages over SIFT descriptors with Mahalanobis distances
or SVMs.

An obvious next step would be to investigate other modern descriptors such as GLOH
[74], SURF [5], or HOG [29] descriptors. However, evidence from other domains indicate
that such alternatives would probably give little improvement in fits over HATs.

Fits might be better if the descriptor model regressed on a subset of the principal
components of the HAT descriptor (rather than directly on the descriptor itself).

A disadvantage of ASMs is the lack of wider context around a point during template
matching, especially at fine resolutions. The relatively large area of the image covered by
HAT descriptors helps (Figure 8.16), but perhaps more could be done. The descriptors
of Belhumeuer et al. [7] may be of use in this regard, and would fit easily into our scheme.
They form their descriptors by concatenating two SIFT descriptors (we would use
HATs) at different image resolutions—the lower resolution descriptor provides context
for the higher resolution descriptor. Along the same lines, Q. Zhang et al. [128] take the
tack of incorporating all four pyramid levels into a single descriptor for each landmark.
Of approaches that also make use of the context around the landmark (but without
impractical search times), another avenue could be regression-based models like the
Random Forest model of Cootes et al. [20].

The advantages of HATs are diminished by the principal-component ASM shape model,
in the sense that the improvement of HATS over 2D gradient descriptors is substantially
larger before the shape constraints are applied. Alternatives to the classical shape model
thus become attractive.

In recent years researchers have paid considerable attention to improving the way the
descriptor and shape models work together. Instead of the separation between descrip-
tor matching and the shape model of the classical ASM, one can build a combined
model that jointly optimizes the descriptor matchers and shape constraints. An early
example is the Constrained Local Model of Cristinacce and Cootes [28]. An informative
taxonomy up to 2010 is given in Saragih et al. [101]. As mentioned on page 111, error
surfaces over the search area are smoother for HATs than for 2D gradient descriptors,
and this smoothness should ease the difficult optimization task.



Chapter 9

Multiview models

Given the solid performance of the HAT-based ASM in the previous chapter, it’s natural
to ask if the model could be extended to also handle non-frontal faces. In this chapter
we make those extensions.

We build a multiview model using a straightforward strategy of three submodels. These
submodels are ASMs optimized for frontal, left three-quarter, and right three-quarter
views respectively (Figure 9.1). Using the position of the face supplied by a global
face detector, we first estimate the face’s yaw and then search for landmarks with the
submodel that best matches that yaw.

After a review of related work, this chapter describes how the face’s pose is estimated.
It then describes the ASMs used as submodels. Finally, it gives results and discusses
future directions.

9.1 Related Work

The idea of using different submodels for different poses isn’t new. Cootes et al. [25]
present an early example. They demonstrate that a small number of models can rep-
resent a wide range of poses. Their model, AAM based [19], can also synthesize views
of the face from new angles.

The approach we take in this chapter rigidly separates pose detection and landmarking.
A limitation of this approach is that if the pose is misestimated the wrong ASM is
applied with no chance for correction. In contrast it seems that most examples in
the literature unify pose and landmark detection. A fairly recent example is Zhu and
Ramanan [132]. As in the method presented in chapter, Belhumeur et al. [7] use SIFT

Figure 9.1:

The three canonical yaws
used in the multiview model:

(i) left three-quarter
(ii) frontal
(iii) right three-quarter.
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descriptors and multiple models, but they use a large number of global models, jointly
optimizing pose and landmark detection using a probabilistic model with SVMs and
RANSAC. Kanaujia and Metaxas [54] also use SIFT descriptors and multiple models.
They determine pose clusters automatically, unlike our method which simply assumes
that three models suffice for the poses of interest. The approach described in this
chapter is faster and more basic than any of the methods just mentioned.

9.2 Why submodels?

Why do we even bother with submodels? In other words, why not simply take the
frontal ASM presented in the previous chapter and instead of training it only on frontal
faces, train it on a wide variety of poses.

Unfortunately an “über ASM” trained like that doesn’t perform well. In attempting to
be a jack of all trades it becomes master of none.

With large pose variations, the distribution of face shapes isn’t at all Gaussian, and the
ASM shape model based on principal components doesn’t work well. To accommodate
the large variation in shapes, the shape model has to be very flexible, and thus it doesn’t
adequately constrain the shapes suggested by the descriptor models. Furthermore,
as the pose changes the features change to an extent that prevents them from being
characterized by single descriptor models—for example, the tip of the nose appears
quite different in left and right three-quarter views.

9.3 The multiview model

This section describes the multiview model. Figure 9.2 summarizes how the multiview
model works.

9.3.1 Face detection

As always, we first locate the face with a global face detector. Since the faces have a
wide variety of poses, the OpenCV frontal detector no longer suffices as it did for the
frontal-only model. Section 9.5 will discuss the face detector. For now we just mention
that the face detectors we currently use don’t return pose information, therefore we
have to independently estimate the face’s pose.

9.3.2 Pose estimation

Before the search begins we must estimate the face’s pose so we can rotate the face
upright and choose the appropriate ASM submodel. This subsection describes how we
estimate the pose.
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Figure 9.2: The multiview model

(a) Detect the face The figure shows the
original image with the face detector rectangle.

(This is image 313914487 1 from the Helen
test set [61].)

(b) Estimate rotation The image is ro-
tated by -50, -25, 0, 25, and 50 degrees. The left
three-quarter, frontal, and right three-quarter face
subdetectors are applied to each rotated image in
the area around the face detector rectangle.

In this example, the -25 degrees image has
the largest number of detections. The estimated
rotation (17 degrees) is a thus a weighted sum
of -50, -25, and 0 degrees. The weights are the
number of detections in the -50, -25, and 0 degree
images. The false detections on the highly rotated
faces are essentially ignored.

(c) Estimate yaw After estimating the in-
plane rotation of the face, the image is rotated so
the face is upright. We work with this rotated
image until the ASM search is complete.
The three face subdetectors are re-applied and a
MARS model estimates the face’s yaw using the
relative number of detections by each subdetector
on the upright face. In this example the estimated
yaw is 20 degrees.

(d) Estimate eye and mouth positions
Eye and mouth detectors are applied. (The eye
and mouth positions will be used to position the
start shape, Chapter 4.) The false detection on
the right eyebrow is ignored because its centroid
is outside the cyan legal zone (Section 4.2).

(e) Place the start shape The start shape for
the right three-quarter ASM is aligned to the
face, using the face detector rectangle and the
eye and mouth positions if available. We use the
right three-quarter model here because the yaw
was estimated to be 20 degrees in step (c) above.

(f) Search with appropriate sub ASM
The face is scaled to an eye-mouth distance of
110 pixels and the right three-quarter HAT ASM
is applied. The figure to the left shows the final
shape after the ASM search.

(g) Map the shape back to image frame The
final shape is derotated and scaled back to the
original image.
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The subdetectors

We use the position of the face determined by the face detector, but to estimate its pose
apply three further face detectors. The subdetectors are trained for left three-quarter,
frontal, and right three-quarter faces respectively. The next few paragraphs describe
these subdetectors; we will shortly give details on how they are deployed.

Each of the subdetectors consists of a truncated cascade of just 14 weak Viola-Jones
classifier stages, rather than the typical 20 or more stages used in standard face de-
tectors. This increases false detections (undesirably), but more importantly greatly
increases the number of detections per face (desirable in this application because a
larger number of detections increases the granularity of the rotation and yaw estima-
tors).

The subdetectors are Viola-Jones detectors [66, 114] with Local Binary Patterns [64]
built with the OpenCV tools on the AFLW dataset [60]. Local Binary Patterns were
used for speed. The AFLW dataset was used for training because of its wide variety of
faces and also because we don’t need it for testing. The ground-truth pose of each face
was estimated (thanks to Tom E. Bishop) using the POSIT code [30]. This pose infor-
mation makes it possible to select faces with the range of yaws appropriate for training
each subdetector. The AFLW manual landmarks are unneeded for this application of
the dataset.

The number 14 of stages above was chosen after some experimentation. Full details of
the detector parameters may be found in the comments embedded in the XML files in
the multiview Stasm code.

Estimating rotation

To estimate the face’s (in-plane) rotation, we first generate images rotated by -50, -25,
0, 25, and 50 degrees, as illustrated in Figure 9.2(b). On these rotated images we apply
the three face subdetectors independently in the area on and around the detected face.
Face rectangles that are too far from the median rectangle in each image are discarded
as false positives. One of the rotated images will have the largest number of detections.
The estimated rotation of the face is taken to be the weighted sum of this image’s
rotation angle and the rotations to each side of it, with the weights being the number
of detections in the three rotated images. (We also tried a MARS model here, but a
weighted sum gives results that are just as good, and is simpler.)

Estimating yaw

Once in-plane rotation has been estimated, the image is rotated so the face is upright.
For efficiency we actually use just the region around the face rather than the entire
image. We work with this rotated region of interest until the ASM search is complete.

The three subdetectors are re-applied to the upright face, as illustrated in Figure 9.2(c).
The face’s yaw is estimated from the number of detections by each of these subdetectors.
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Figure 9.3:

MARS model to estimate the face’s
yaw.

This estimates yaw from the number
of detections by the left three-quarter and
right three-quarter face detectors (as a
fraction of the total number of detections
by all three detectors).

This estimation is made with the MARS model illustrated in Figure 9.3. It estimates
the yaw from the fraction of left and right three-quarter detections (of the total number
of detections by all three subdetectors). Intuitively, MARS is appropriate here because
the yaw can be estimated as a weighted sum of the counts, but with some adjustment
for non-linearity.

Note that the number of frontal detections enters the model implicitly. For example, on
the far left of the figure, the left and right fractions are zero, implying that all detections
were by the frontal detector, which is strong evidence for a frontal face.

The MARS model was trained on 2000 AFLW images, for each face regressing the
ground-truth yaw on the relative counts of the three detectors on the upright face. The
MARS model has a regression R2 (coefficient of determination) of 0.79 on this training
data, slightly better than a linear model which has an R2 of 0.76.

How well does this basic yaw detector work? Figure 9.4 shows the estimated yaw
versus the ground-truth yaw (which is itself an estimate made with the POSIT code).
Figure 9.5 shows how fitness varies with the absolute error in estimating yaw. There
is only a weak relationship between fit and yaw error, i.e., improving the yaw detector
would give only a very small overall improvement in fit on this data. We verified that
to be true by running the model again on the same data, but using the ground-truth
instead of the estimated yaw to select the submodel for each face. The resulting error
distribution curves were almost identical (not shown). Similar results applied for the
rotation detector (not shown).

Alternative pose estimators

As an alternative approach, we trained an SVM to estimate the yaw from the histogram-
equalized region in the face detector rectangle. After some experimentation with differ-
ent subregions in the rectangle, this approach was abandoned for now because it didn’t
give as good estimates of yaw.

However it would worthwhile pursuing this alternative further, as it is more efficient
than our current run-all-detectors technique. Viola and Jones [115] for example describe
a highly efficient pose detector that uses a decision tree on standard Viola-Jones image



9.3 The multiview model 122

−40 −20 0 20 40

−
60

−
40

−
20

0
20

40

ground truth yaw   (degrees)

es
tim

at
ed

 y
aw

   
(d

eg
re

es
)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 9.4:

Estimated yaw versus ground-
truth yaw.

The shaded curve on the bottom
shows the density of ground-truth
yaws in the test set.

Measured on the same AFLW
data as Figure 9.7.
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Figure 9.5: Landmark fits versus error in estimating yaw.
Left mem17 versus absolute difference between estimated and ground-truth yaw.
Right The same, after taking cube roots on both the horizontal and vertical axes to

decompress the crowded section of the plot.
Measured using the multiview Stasm on the same AFLW data as Figure 9.7.

features. It would also be worthwhile looking into the possibility of an open-source face
detector that also returns pose information (e.g. see the survey by Zafeiriou et al. [124]).

9.3.3 Applying the appropriate ASM

The estimated yaw determines which ASM to use: if the yaw is between -14 and 14
degrees, the frontal ASM is used; otherwise the appropriate left or right three-quarter
ASM is used. The parameter 14 was determined by empirical testing on an internal
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parameter-selection set. Its exact value isn’t critical.

As usual the start shape is positioned using the detected eyes and mouths, before
the appropriate ASM is applied. The eyes and mouths are detected as described in
Section 4.2, although for three-quarter faces we must use different search areas within
the face detector rectangle.

Once the ASM search for landmarks is over, the shape is derotated and scaled back to
the original image as illustrated in Figure 9.2(g).

9.4 Training the multiview ASMs

Per-face yaw labels are needed to train the pose-specific submodel ASMs. For this
project the models were trained on the MUCT data, which has faces categorized into
frontal and three-quarter views. Figure 9.6 illustrates how the MUCT data was parti-
tioned for the submodels. (Section 7.1.1 explains why the MUCT data was chosen for
training.)

The frontal ASM for the multiview model is the same as that presented in the previous
chapter. As described in Section 8.9, this model was trained on the 6008 frontal and
near frontal images of the MUCT abde subset (using mirroring to bring the number
of faces from 3004 to 6008).

A single three-quarter ASM was trained. This is the right-three-quarter model, which
is flipped if necessary during the search to act as a left-three-quarter model. Actually
we flip the image, not the model, but the net effect is the same.

Figure 9.6: How the
MUCT data is parti-
tioned to train the ASM
submodels.

The labels a. . . e refer
to the camera position,
i.e., the pose. Mirrored
images have negative
labels.

In reality the left
three-quarter model
wasn’t actually gener-
ated. Instead the right
three-quarter model
is flipped if necessary
during the search.



9.5 The multiview face detector 124

The three-quarter model was trained on the much smaller set of 1502 yawed faces of
the MUCT bc subset. The c faces are three-quarter faces. The b faces aren’t three-
quarter (more like five-eighths) but are used to augment the training set as described in
Section 3.14.3. Mirroring can’t be used because the faces aren’t frontal. The size of this
set was artificially increased to 3500 by applying x- and y-stretching, small rotations,
and changing the intensity gradient across the face. Note that in the three-quarter
views many points will be obscured. Such missing points are handled as described in
Section 3.14 “Imputing missing points for training three-quarter views”.

Training the right three-quarter model takes a little less time than the frontal model
(which takes less than three minutes) because the training set is smaller. The total
training time for the entire multiview model is thus under six minutes.

Model parameters for all submodels were determined by testing against an internal
parameter-selection set of faces gathered from the internet (Section C.2).

9.5 The multiview face detector

The Stasm code uses the OpenCV [87] libraries, which currently don’t provide a multi-
view face detector.1 Therefore for generating reproducible test results in this chapter we
use the face detector of the 2013 iBUG 300-W Challenge (Section 9.6.3). To be precise,
we take our existing multiview model trained on the MUCT data but use the 300-W
face detector instead of the commercial detector for which our model is optimized.

The iBUG group don’t make the actual detector available. However, they do provide
face detector rectangles for faces in some popular datasets. Using these rectangles we
can run tests on these datasets as if we had the detector.

Unfortunately, coordinates aren’t available for this detector on the BioID and PUT
data, so we can’t display fitting results on that data—but they would be the same
as those for the frontal-only HAT model in the previous chapter (Figure 8.18), up to
differences caused by the different face detector.

9.6 Results with the multiview model

This section presents results for the multiview model.

9.6.1 Fit versus yaw

Figure 9.7 shows the fit for faces at different yaws with different submodels. The
combined model (black curve) achieves the best fit across all yaws, by automatically
selecting the ASM appropriate for the yaw as described previously. However, misesti-
mates of yaw sometimes occur, as was seen in Figure 9.4 and can be seen here from

1OpenCV provides frontal and side detectors. Neither of these work well on three-quarter faces.
This was checked in the version of OpenCV at the current time, OpenCV 3.0.0.
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Figure 9.7: Mean fit versus yaw using submodels applied individually and combined.
The horizontal axis is the ground-truth yaw.
The dots show the fit on each face using the combined model, with their color indicating
the ASM submodel that was selected using the estimated yaw.
The shaded curve on the bottom shows the density of ground-truth yaws in the test set.
Fits were measured on 3500 faces from the AFLW set. The text below has details.

misplaced colored dots. The effect of these misestimates is mitigated by the partial
robustness of the models to poses out of their yaw range.

From the slight concave shape of the black curve we see that fits are generally slightly
worse on non-frontal faces, even with submodels. The smaller training set used for the
three-quarter models may be playing a part here (Section 9.4).

Details on Figure 9.7: Fits were measured using the mem17 measure (the mean error
of 17 face points, normalized by the eye-mouth distance, Section 6.2.4). Fits were
measured on 3500 faces randomly drawn from the AFLW set [60] with ground-truth
yaw and pitch between -45 and 45 degrees and rotation between -30 and 30 degrees. We
don’t have a face detector capable of detecting these faces, nor do we have the AFLW
face detector rectangles for the 300-W detector (Section 9.5). Therefore the position
and size of the face detector boxes was simulated by adding random noise to the face
extent specified by the manual landmarks. The level of noise was tuned so our software
gave similar mem17s on the Helen training set regardless of whether the simulated or
actual 300-W face detector was used (Section 9.5). A real face detector would give
slightly different results.
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Figure 9.8: Faces automatically landmarked by the multiview model.
These faces are from the datasets used in Figure 9.12.

Figure 9.9: Bad fits by the multiview model:
(a) yaw was incorrectly estimated as being leftwards, so the wrong submodel was used
(b) eye locations confused by sunglasses
(c) mouth open, confused bottom lip for chin
(d) confused base of nose for mouth, and mouth for chin.
These faces are from the datasets used in Figure 9.12.

Figure 9.10: Fits by the multiview model on the low-quality images from Figure 7.6.
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9.6.2 Example fits, good and bad

Figure 9.8 shows some faces automatically landmarked by the multiview model. The
figure illustrates the model successfully handling faces in various poses and with par-
tial occlusions. (Such montages of faces, although visually appealing and common in
papers, are too small a sample to be indicative of overall performance. The cumulative
distribution graphs displayed later are more informative.)

Figure 9.9 shows examples of bad results with the multiview model. The yaw was
misestimated in Figure 9.9(a) because the hair across the side of the face was mistaken
as background by the face detectors. Shadows across the face can similarly mislead the
face detectors. Sunglasses as in Figure 9.9(b) are nearly always a problem. Perhaps
a sunglass detector could be used to indicate that the local texture in the region of
the eyes isn’t to be trusted, and that the position of the eyes should be determined by
the overall shape model or simply marked as not available. Likewise an open-mouth
detector could resolve cases like Figure 9.9(c). However in general we prefer to avoid
such accretions to the algorithm.

Figure 9.10 shows fits on some low-quality images referred to in Section 7.3.

9.6.3 The iBUG 300-W challenge and face data

This section describes the 2013 300-W challenge and the associated iBUG data. The fol-
lowing sections will then present the results of applying the multiview model to this data.

The 2013 300-W challenge

The 2013 iBUG 300-W Challenge [100] tested the ability of participants’ software to
automatically locate 68 facial landmarks in unseen images of faces. A hidden test set,
not available to the participants, was used to evaluate the software. This set consists of
300 indoor and 300 outdoor faces with reference landmarks created semi-automatically.
Participants submitted their software to the challenge organizers who ran the software
on the hidden set and reported the results.

To prevent variation in landmark accuracies caused by use of different face detectors,
all face positions were estimated with the standard iBUG 300-W face detector. As
mentioned on page 124, the actual face detector isn’t made available, but the detector
rectangles are supplied for the example faces. These rectangles were used as a surrogate
face detector for the graphs in this chapter.

The organizers measure fitness as the mean distance between the automatically located
points and the reference landmarks, divided by the distance between the reference
outer eye-corners. This fitness measure is reported for all 68 landmarks (called the
ec68 measure in this document) and also for the 51 landmarks interior to the face (the
ec51 measure).
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The iBUG landmarks

The organizers of the challenge supplied reference landmarks created semi-automatically
for several thousand example faces for images from popular face datasets, such as the
XM2VTS set. Note that these iBUG landmarks don’t exactly match the landmarks
provided by the original developers of these datasets. Note also that only 224 of the
original 300 LFPW test faces are available, and only this subset is shown in the plots.

The iBUG test set

The organizers of the challenge also provided a small test set of 135 faces intended to
be representative of the faces in the hidden set. We call this set the iBUG test set
(not to be confused with the iBUG hidden set).

Many of the faces in the test set are of low resolution or quality. For examples, see
Figure 7.6 on page 89. As discussed in Section 7.3 “The ideal face database”, in this
thesis we are more interested in applications where such faces are unusual. Thus this
test set and the hidden set aren’t representative of the data that our multiview model
is designed for, but nevertheless present an interesting academic challenge.

Converting Stasm to iBUG landmarks causes performance degradation

Our model was trained on the 77 MUCT landmarks. When the iBUG manual landmarks
are used as the ground truth for measuring fitness, our landmarks have to be converted
after the search to the 68 iBUG landmarks.

These two sets of landmarks define the landmark positions differently. For example, the
iBUG outer left eye-corner landmark is above and to the right of the MUCT landmark
(Section 7.2.2).

To perform the conversion to iBUG points, our software estimates their position either
by simply copying points (e.g. eye-corners) or by interpolating between nearby points
(e.g. jaw landmarks). (Ad hoc interpolation constants were estimated from the first 10
faces of the Helen training data. Because this data was used for this purpose during
training, the Helen training data isn’t displayed in the test results in this chapter.)

Because of landmark conversion discrepancies, when the iBUG manual landmarks are
used as the ground truth the performance of our model is artificially degraded compared
to models trained directly on iBUG landmarks.

9.6.4 Multiview versus frontal-only model

Figure 9.11 shows the cumulative distribution of fits on various datasets using the mul-
tiview model (solid lines) and the frontal-only model (dashed lines). Of these sets, the
Helen test set with its wide variety of at least medium-quality faces is most represen-
tative of the faces our software is designed for (Section 7.3).
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Figure 9.11: Multiview model (solid lines)
versus frontal-only model (dashed lines).

The multiview model gives better fits
on datasets with non-frontal faces.

The mem17 measure of fitness is used (the
mean error of 17 face points, normalized
by the eye-mouth distance, Section 6.2.4).
Note that the reference landmarks in
this figure are the iBUG re-marked land-
marks. For details on the data please see
Figure 9.12 and the accompanying text.

For the XM2VTS set, with nearly all frontal faces, the frontal-only model suffices;
for sets with three-quarter views the multiview model gives better fits. The slight
degradation of fits of the multiview model on the XM2VTS set (barely perceptible in
the graph) is caused by misestimates of yaw (e.g. using a three-quarter model on a
frontal face).

Details on Figure 9.11: The frontal-only model in the figure is identical to the
multiview model but with the pose detector forced to always return frontal. Or to
put it another way, it’s the HAT model presented in Chapter 8 but with the 300-W
face detector (Section 9.5) rather than the OpenCV face detector. (This in itself is
sufficient to improve landmark accuracies.) The data sets are the XM2VTS [72], Helen
test set [61], and the iBUG test set supplied for the 2013 300-W Challenge. The pupil
landmarks aren’t provided, therefore the pupil positions for this plot (necessary for the
mem17 measure) are taken to be the mean of the eye-corners.

9.6.5 Results on the iBUG landmarks

Figure 9.12 shows the results of running the multiview model on the datasets provided
on the 300-W web page. As expected, we do best on the clean frontal faces of the
XM2VTS set.

9.6.6 Results on the iBUG hidden set

Figure 9.13 shows the results of running the multiview model on the 300-W hidden set.
These curves were generated by the 300-W organizers.

On this set of faces, landmarking accuracy isn’t as good with our model as the models
of E. Zhou et al. [130] and J. Yan et al. [121]. Note however that converting Stasm
to iBUG landmarks causes our model to take an artificial performance hit, and that
the test data isn’t representative of the faces Stasm was designed for (as discussed on
page 128). The next section has results on more representative data.
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Figure 9.12: Fits for our multiview model on the datasets provided on the 300-W web
page [100], after converting our model’s landmarks to iBUG landmarks
Left: ec51 The mean distance between the 51 automatically located points internal
to the face and the reference points, divided by the distance between the reference eye
outer corners.
Right: ec68 The same measure for all 68 landmarks.
Note that the reference landmarks for all figures in this chapter (except those showing
AFLW data) are the iBUG re-marked landmarks [100], not the landmarks from the
original databases (XM2VTS [18], Helen [61], LFPW [7], and AFW [132]).

Figure 9.13: Fits for various models on the hidden set, as reported by the organizers
of the 300-W challenge.
The “Milborrow et al.” curve is an early version of the multiview model described in
this chapter. The graphs shows the fits after converting our model’s landmarks to iBUG
landmarks. Note that this artificially difficult set of faces isn’t representative of the data
that our multiview model is designed for (page 128).
From a figure at http: // ibug. doc. ic. ac. uk/ resources/ 300-W (accessed Feb 2016) show-
ing results on the combined indoor and outdoor hidden sets (600 faces in total). For
details see [100]. The models in the graph are described in E. Zhou et al. [130], J. Yan
et al. [121], Milborrow et al. [80], Baltrusaitis et al. [4], Jaiswal et al. [50], and Hasan
et al. [44].

http://ibug.doc.ic.ac.uk/resources/300-W
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The landmark conversion issue explains only part of the gap between the curves for the
multiview model and Zhou et al. and Yan et al. models. It’s likely that also contributing
to the better accuracy of their models is the way they work in a sophisticated way from
coarse-to-fine resolution. Our model, on the other hand, simply estimates the pose
and uses the standard ASM image pyramid, with no consideration of alternative search
paths. This is fast but doesn’t allow recovery from poor initialization. The search times
for the various models on the hidden data weren’t made available.

9.6.7 Results on the Helen test data

Of the landmarked data provided for the 300-W Challenge, the Helen dataset is the
most representative of the applications we have in mind in this thesis (Section 7.3). We
thus have a special interest in this set. Figures 9.14 and 9.15 compare our multiview
model on this data to very recent models presented by Martinez and Valstar [71] and
Tzimiropoulos [110].

Both these models start with the cascaded regression of Dollár et al. [31] and the Su-
pervised Descent Method (SDM) of Xiong and De la Torre [120]. Martinez and Valstar
improve convergence of the SDM by using a combined L2,1 distance measure instead of
the usual L2 distances, and by using multiple initializations over small spatial displace-
ments and poses (which are then aggregated). The L2,1 measure makes comparison
between shapes of facial descriptors more robust to partial occlusion (by the subject’s
hair, for example). A disadvantage as always with L1 versus L2 measures is that opti-
mization is more difficult.

The PO-CR method of Tzimiropoulos learns a sequence of average Jacobian and Hessian
matrices from the image. These matrices give descent directions for optimization in a
subspace orthogonal to local variation in image appearance—variation is removed by
projecting it out so only useful information remains. The paper reports excellent fits
with this model and robustness on difficult faces.

Figures 9.14 and 9.15 show that our multiview model (after converting the MUCT
landmarks to the iBUG landmarks as described on page 128) doesn’t quite reach the
accuracies of these models on the Helen test data. Our model is however markedly
faster than the current implementations of these models.

Details on Figures 9.14 and 9.15: The curves show results on the designated test
subset of the Helen data (330 faces) using the re-marked iBUG reference landmarks.
This data wasn’t used when training any of the models. The curves for the multiview
model were generated on a local machine; the other curves are reproduced directly
from figures in the two cited papers. We don’t know how the performances of the face
detectors for the two models compare to the one we use; this probably has some effect
on the results.



9.6 Results with the multiview model 132

The green curve shows the

Martinez and Valstar

L2,1 accumulation model [71].

The blue curve shows the

multiview model presented

in this chapter.

The red curve shows the Martinez

and Valstar implementation of the

SDM of Xiong and De la Torre [120]

Figure 9.14: Comparison of our multiview model to the 2015 model of Martinez and
Valstar [71] on the Helen test data [61], after converting our model’s landmarks to
iBUG landmarks
This figure is based on Figure 3(b) in [71]; please see that paper for details.
The curves show the ec49 measure: the mean distance between 49 automatically located
points internal to the face and the reference iBUG points, divided by the distance
between the reference eye outer corners. This is the same as the ec51 measure but
without two points on the interior of the lips. (In practice the ec51 curve is virtually
identical; see the black curve in Figure 9.12.)

The black curve shows the

Tzimiropoulos PO-CR model [110].

The dark blue curve shows

the multiview model presented

in this chapter.

The magenta curve shows

the SDM of Xiong and

De la Torre [120].

Figure 9.15: Comparison of our multiview model to the 2015 model of Tzimiropou-
los [110] on the Helen test data [61], after converting our model’s landmarks to iBUG
landmarks.
This figure is based on the top right of Figure 2 in [110]; please see that paper for de-
tails. The yellow Chehra curve in the original figure is removed here to reduce clutter
and because the Chehra model used the Helen test data in training.
The curves show the mean distance between 49 automatically located points internal to
the face and the reference iBUG points, divided by the face size, where the face size is
defined as the mean of the face’s width and height [132]. Note that all 68 points are
used to compute the face size although only 49 points are used to compute fits.
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Figure 9.16: Search times for the multi-
view model.

Total is for all steps except reading
the image from disk and once-off model
initialization. Face detection time by the
300-W face detector isn’t included.

PoseDetection is for steps b and c
in Figure 9.2.

Times were measured on a 2.9 GHz i7
4910MQ processor with the same datasets
as Figure 9.12.

9.6.8 Search times

Figure 9.16 shows search times for the multiview model. In the current implementation,
detecting the pose takes about half the total time. Pose detection time could be reduced
by relatively easy optimizations to the code. The mean eye-mouth distance in pixels
is shown after the dataset name on the horizontal axis. Pose detection takes longer on
bigger faces, because the face detectors used for pose detection take longer.

9.6.9 Error per landmark

Figure 9.17 shows the mean fit error per landmark of the multiview model. The fig-
ure reflects the level of inherent ambiguity in the landmark positions. It shows that
positioning of points interior to the face is better than for exterior points—the worst
errors occur on the jaw. Of the interior points, the eyebrows fare the worst, especially
the edges of the eyebrows (landmarks 18, 22, 23, and 27). The eye landmarks have the
smallest errors.

9.6.10 Effect of pose diversity on fits

A measure of the diversity of poses in a set of faces is the standard deviation of the
“aspect ratio” of the faces. The aspect ratio is defined here as the ratio of the eye-
mouth distance to the eye-corner distance. We measure the eye-mouth distance here
from the centroid of the eye outer corners to the bottom of the bottom lip. (This
definition differs from the eye-mouth distance used elsewhere in this thesis because the
pupil manual landmarks aren’t available.)

This aspect ratio will vary as the pose varies and as the mouth opens. The mean aspect
ratio for neutral frontal adult faces is coincidentally close to 1 (its mean value over the
XM2VTS faces for example is 0.98).
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Figure 9.17: Per landmark error of the multiview model.
Error here is the distance between the automatic and reference landmarks, divided by
the reference eye-corner distance.
The plots shows fits by the model against the iBUG reference landmarks on the 330
faces of the Helen test set [61] and mirrored versions of the same (660 faces in total).

Figure 9.18 shows the linear relationship between the median fit and diversity of the
faces. It plots for each dataset the median ec68 versus the standard deviation of the
aspect ratio. Not surprisingly, diversity tends to cause worse overall fits.

9.7 Discussion

Using three submodels as described in this chapter is sufficient for many practical
applications. Increasing the number of basic poses above three is an obvious future
direction. Certainly models for side views are necessary to handle the full gamut of
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Figure 9.18:

Median fit versus standard deviation
of the face “aspect ratio”.

This standard deviation is a measure
of diversity.

Diversity causes worse median fits.

The colored dots correspond to the points
on the median line (proportion 0.5) in
the right figure of Figure 9.12.
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faces. Models for pitched views may also help, but one quickly reaches the point of
diminishing or even negative returns—a problem compounded by misestimates by our
pose detector and the combinatorial explosion of yaws, pitches, and rotations.

Ad hoc additions to the model to handle some of the worst cases in Figure 9.9 may be
of some benefit. For example, cases like Figure 9.9(c) would benefit if we detected that
the mouth was open. However, such additions would affect only a small proportion of
faces in realistic test sets and may have unwanted side effects in the bulk of the faces.

Performance would probably be improved with a better training set: our model was
trained on the MUCT faces, which weren’t photographed in the wild, and have a limited
number of three-quarter views.

For efficiency the integral images required by the Viola-Jones face detectors should
be shared rather than redundantly regenerated afresh for each of the three detectors.
It may be more efficient to use face detectors specialized for rotated views instead of
rotating the image. The current implementation applies the face detectors used for pose
detection sequentially, but parallelization on multicore processors could appreciably
reduce the pose detection times seen in Figure 9.16.

With the multiview HAT model we have pushed the old-fashioned ASM quite far. But
there is only so much mileage one can get out of the ASM. It’s intrinsically limited by the
rigid separation between shape and descriptor models, the simple principal-component
shape model, and its selection of a single best point during descriptor matching (instead
of making use of a fitness or probability surface). For accuracies very competitive with
the current state of the art, we would have to consider replacing this approach with
modern techniques that jointly optimize pose, the shape constraints, and descriptor
matching. Longer search times may then become a concern.



Chapter 10

Conclusion

This thesis investigated new methods for automatically finding landmarks in images of
faces. As stated in the introduction, the overall intention was to introduce methods that
perform well enough for use in real-world applications like face remodeling or retouching.
The methods investigated are extensions to the Active Shape Model (ASM) of Cootes
and Taylor [23].

The first extension replaces the gradient descriptors used in the classical ASM with a
form of SIFT descriptors. These descriptors, called Histogram Array Transform (HAT)
descriptors, are like SIFT descriptors but can be generated and tested against the image
much more quickly than standard SIFT descriptors. Multivariate Adaptive Regression
Spline (MARS) models are used to match image descriptors against the model, instead
of the Mahalanobis distances used in the classical ASM. The MARS models bring both
speed and better predictions in this setting.

This HAT-based ASM is shown to perform well on frontal faces, with close to state-of-
the-art accuracies on the BioID data. The last section of Chapter 8 discusses possible
improvements to the model and compares the methods used to some other recent ap-
proaches.

The model is then extended to handle faces with different poses. This is done by first
estimating the target face’s pose, rotating the face upright, then applying one of three
submodels optimized for frontal, left, or right three-quarter views.

Although this multiview model may not be the most accurate landmarker ever devised,
on the data we are interested in it’s among the most accurate, fastest, and simplest. On
the iBUG 300-W set of unrealistic “difficult” faces, the model’s landmarking accuracy
wasn’t as good as two of the six models compared against. On the more representative
Helen data the multiview model approaches the accuracies of the most current models.
The last section of Chapter 9 discusses limitations of the model and offers some potential
improvements.



Appendix A

Principal components

Principal Component Analysis (PCA) is a widely used method for analyzing and pro-
cessing multidimensional data. This appendix gives an informal introduction, skipping
over much of the mathematics. The presentation is general in nature, rather than fo-
cusing just on ASMs. More mathematical treatments may be found in e.g. James et
al. [51] or in most multivariate statistics textbooks e.g. Johnson and Wichern [53].

A.1 Principal axes

Before we can discuss principal components we first need to discuss principal axes.

Consider a set of data points in three dimensions (Figure A.1). Of all the different axes
we can draw running through the center of the data, one axis will point in the direction
of maximum variation of the points. (More precisely, the coordinates or orthogonal
projections of the points on this axis have the maximum variance.) This axis is the
first principal axis. So if the points are scattered in the shape of a rugby ball, the first
principal axis will be along the long axis of the rugby ball.

Now we seek the second principal axis. This by definition must be orthogonal to the first
principal axis, so must be somewhere on the plane orthogonal to that axis (Figure A.2).
Of all the axes we can draw on the plane running through its center, one axis will point
in the direction of maximum variation of the points projected onto the plane. This axis
is the second principal axis.

Figure A.1:

Some three-dimensional data with its
principal axes.



A.2 Principal axes in two dimensions 138

Figure A.2: With 3D data, the
second principal axis lies some-
where on a 2D plane orthogonal
to the first principal axis.

The direction of the second
principal axis is the direction of
maximum variation of the points
projected onto the plane.

The third principal axis must be orthogonal to the first two. Due to the constraints of
three-dimensional space, there is only one such direction remaining, and we use it for
the third principal axis.

A.2 Principal axes in two dimensions

Figure A.3 shows another example, this time for two-dimensional data. Of all the axes
we can draw through the center of the data, one will be in the direction of maximum
variance. This is the first principal axis. In this example it’s at 157 degrees.

An alternative interpretation is that the first principal axis is as close to the points as
possible. More precisely, of all possible axes running through the center of the data, the
sum of the squared distances from the points to the principal axis is the lowest. It turns
out this alternative interpretation is equivalent to the maximum variance approach—it
chooses the same axis.

In two-dimensional space, there is space for only one more orthogonal axis, which
becomes the second principal axis.
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Figure A.3:

Histograms produced by project-
ing some two-dimensional data at
various angles [76].

The projection with the maxi-
mum variance gives the direction of
the first principal axis. For this data
that direction is 157 degrees.

After Flury and Riedwyl [37]
Figure 7.1.
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Figure A.4: Generating the principal axes:

(i) Arrange the data into an input matrix, one data point (observation) per
row. (Some authors use the transpose: one observation per column.)
In this example the matrix is illustrated with four columns (the data lives in a
four-dimensional space, four variables per observation).

(ii) Generate the covariance matrix from the data in the input matrix.

(iii) Use a standard software routine to extract the eigenvectors
and eigenvalues from the covariance matrix.

Because the eigenvectors are extracted from the covariance matrix, they are the
principal axes of the data. The eigenvalues give the variance of the data along each
principal axis.

A.3 Multiple dimensions

We can sketch only two or three dimensions on a printed page, but if the data lives
in a space with more than three dimensions, we can continue seeking further principal
axes. Each principal axis is orthogonal to the previous principal axes and points in the
direction of maximum remaining variation of the data points.

For shape models, we treat shapes as vectors in multidimensional space (Section 3.1).
This space has 2n dimensions, corresponding to the two coordinates of n shape points.

A.4 Principal axes are eigenvectors of the covariance matrix

It turns out that the above process of seeking principal axes of the data can be performed
by generating the eigenvectors of the covariance matrix of the data. Eigenvectors are
mathematical objects which are the principal axes of the data if they are generated
from its covariance matrix.

Figure A.4 illustrates how we generate principal axes. The two arrows on the right of
the covariance matrix in the figure can be thought of as a function, a MATLAB or C++

routine if you will, that takes as input the covariance matrix and generates two objects:
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(i) The square eigenmatrix Φ. Each column of Φ is an eigenvector or principal axis.
Each principal axis is of unit length and is orthogonal to the other principal axes.

(ii) The vector of scalar eigenvalues λ. Each eigenvalue is a measure of importance of
the corresponding principal axis. More precisely, the value of an eigenvalue is the
variance of the data in the direction of the principal axis. The first principal axis
has the largest eigenvalue, and the last principal axis has the smallest eigenvalue.

Internally the software doesn’t generate the eigenvectors using the variance maximizing
process described in the previous sections—it uses more efficient and numerically stable
methods—but the net effect is the same.

A.5 An alternative coordinate system

A point in multidimensional space can be specified by its coordinates on the conven-
tional axes of that space. Alternatively we can specify the point by its coordinates on
the principal axes. The principal axes form an alternative coordinate system.

We can see this idea being used in the shape model formula (Equation 3.5), and repro-
duced here:

x̂ = x̄ + Φb . (A.1)

Figure A.5 illustrates this equation in two dimensions. In 2D, the equation expands to

x̂ = x̄ + b1Φ1 + b2Φ2 . (A.2)

The left side of the equation is a point x̂ =

(
x1
x2

)
in the original coordinate system.

The right side x̄+ Φb specifies the same point in terms of the principal axes: the right
side is the offset x̄ to the center of the cloud of data, plus the position of the point

specified by its coordinates b =

(
b1
b2

)
on the principal axes Φ of the data.

Figure A.5: The same point x̂ represented in two different coordinate systems.
Left Original conventional coordinates.
Right Principal component coordinates x̄+ b1Φ1 + b2Φ2 .



A.6 Principal components 141

A.6 Principal components

The principal components (PCs) of the data points are their coordinates on the principal
axes. These coordinates are also known as the scores.

To elaborate, the coordinate of a point on the first principal axis is the first principal
component (PC) of that point. Likewise, the coordinate of the point on the second
principal axis is its second principal component, and so on for further axes. In the 2D
example in Figure A.5 we call these principal components b1 and b2.

However, it should be mentioned that people often refer to the principal axes themselves
as the principal components.

A.7 Principal Component Analysis

In traditional Principal Component Analysis (PCA), researchers (often in the life sci-
ences) seek to understand the data by examining the relationship between the data
variables and the principal axes.

For example, if the variables are test results for several subjects by school students,
the first principal component might represent overall academic ability, the second a
contrast between science and art subjects, and with the remaining axes having no
simple interpretation.

We don’t need to do this kind of analysis for shape models, although it can be intriguing
to see how the face shape varies with different principal components (Figure 3.4 on
page 32).

Having said all that, it should also be mentioned that people often use the term “Prin-
cipal Component Analysis” in a very general sense to mean any manipulation of the
data that involves the principal axes.

A.8 Dimensionality reduction and compressing data

What is the advantage of using the principal axes over the original axes? One advantage
is that we can use the principal axes for optimally reducing dimensionality. For example,
say we were allowed only one axis to specify points in the 3D space of Figure A.1. We
would capture as much variation as possible if we used the first principal axis and
specified the points by their coordinate on that axis. We project the data down to the
one dimension in the direction of the axis, but by choosing that direction carefully we
lose as little information as possible.

We can optimally project the data down to two dimensions by using the first two
principal axes. This compresses the data down to the plane spanned by the first two
principal axes. We capture more information than when we compressed down to only
one axis.
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Figure A.6:

Some 2D data (gray
dots) and its reconstruction
(black dots) along the first
principal axis.

And so on for further axes. If we use all the principal axes to specify the data, no
compression would take place, and in that case we may as well use the original axes.

Figure A.6 shows a 2D example. The gray points are the original data. The black
points are the first principal component. The black points are a 1D approximation of
the gray points.

To transmit the positions of the gray points, we need to send two coordinates per point.
We can greatly reduce the amount of data to be sent by transmitting only the position
of the black points instead. We would do this by transmitting the offset and direction
of the first principal axis, followed by the single coordinate of each point on the axis.
This roughly halves the bandwidth required, but the receiver can reproduce the gray
points only approximately. It’s lossy compression.

On the other hand, if the points should be distributed along the line, and any offset
from the line is due to noise, then by reducing the data down to 1D we denoise the
data. The data is intrinsically one-dimensional although it exists in a two-dimensional
space. Admittedly with only a few dimensions these examples are a bit contrived—the
ideas are more useful in higher dimensional spaces.

Figure A.7 shows some data that is intrinsically two-dimensional—the points are on
a plane—although they exist in a three-dimensional space. In an ASM shape space
(which for a 77 point model has 77 × 2 = 154 dimensions), the bulk of the variation
in the training faces is accounted for by the first thirty or so principal axes. The
remaining principal axes mostly represent noise or quirks of the training set. We can
represent the true distribution of shapes underlying the training sample more accurately
by keeping only the important axes—the thirty or so axes that represent the intrinsic
dimensionality of face shapes. Section 3.9 gives an extended example.

Figure A.7: 2D data in a 3D space.

Although the points are in a 3D space,
they are on a 2D plane in that space.

There is no variance in the direction
of the third principal axis. The third
eigenvalue is zero.
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A.9 Characteristics of principal components

The principal axes are derived from the covariance matrix—in Figure A.4, the eigen-
vector matrix “sees” only the covariance matrix, not the data itself. Properties of the
data not captured in the covariance matrix aren’t represented by the principal axes.

This section discusses some characteristics of principal components, making use of ex-
amples of data in two dimensions. Most of these characteristics follow from the above-
mentioned covariance-matrix view of the world.

In Figure A.8(a), the variables x1 and x2 are highly correlated and there is variation
only along a line. The data can be fully described by the first PC. Although the data
is in a two-dimensional space it’s intrinsically one-dimensional. This data is perfectly
suited to PCA.

Figure A.8(b) shows the other extreme in terms of correlation. The variables x1 and
x2 are uncorrelated and the variance of the data is the same in all directions. The data
cloud doesn’t have a “direction”, and thus there is no axis of most variation. If we
were forced to use just one dimension to characterize this data, we could choose either
the horizontal or vertical axis, or indeed an axis at any angle through the center of the
data. None of these choices is better than any other. We really need two dimensions
to describe uncorrelated data like this with reasonable accuracy. In practice there will
be at least some correlation in almost all datasets, especially in high dimensions.

Another type of data is shown in Figure A.8(c). There is obviously a relationship
between x1 and x2, but it’s nonlinear. This nonlinearity won’t be reflected in the
covariance matrix. Dimensionality reduction using PCs is often ineffective for data
with strong nonlinear relationships, because projecting the data onto the principal axes
washes out the nonlinearity and thus discards an important characteristic of the data.

There are techniques related to principal components for reducing the dimensionality of
nonlinear data (e.g. Hastie and Stuetzle [46], Roweis and Saul [99]). Alternatively, it’s
sometimes possible to first transform the data so that it’s more linear in the transformed

Figure A.8: Clouds of data with different shapes.
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space, then do the PCA in the transformed space. It may be sufficient to take the log,
square, or square root of some of the variables, or perhaps convert them to polar
coordinates.

Finally, Figure A.8(d) shows data in two clusters. The principal axes are shown in
red. They don’t reveal much about the data in this example. Crucial information will
be lost if we project the data down to one principal axis. Although this data can be
represented using Equation A.1, that would be a misleading parametrization of the
data. Constraining the principal components (Section 3.10.2) will constrain the points
to the area around the origin, where the density of the data is in fact low.

For this kind of data, where there are two groups, what is usually more important is
the axis that optimally separates the groups—the linear discriminant axis—but that
is another topic.

Shadows

Another way of building intuition about what kind of data is best represented by
principal components is to consider the shapes of clouds of data in three dimensions,
and the shadows of those clouds. A shadow is a two-dimensional projection of a three-
dimensional object.

Ellipsoidal data (such as Gaussian data) lends itself to PCA because in any direction
the shadow of an ellipsoid is an ellipse, with natural major and minor axes (Figure A.9).
The shadow of a rugby ball is an ellipse. The overall shape of the data doesn’t change
as we reduce dimensionality.

Figure A.9:

The shadow of an ellipsoid is al-
ways an ellipse or a degenerate ellipse.

Figure A.10:

The shadow of a box is in general
not a rectangle.

(These figures doesn’t show the prin-
cipal components; the shadows are in
arbitrary directions.)
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On the other hand, data uniformly distributed in a box shape is often inappropriate
for PCA, because the shadow of a box is in general not rectangular (Figure A.10). If
the points are uniformly distributed in the box, the first principal axis will be roughly
along the longest diagonal within the box, from corner to corner. This would probably
not be a helpful way to parameterize this (somewhat unusual) data, unless the box is
very long or thin.

And data with points grouped into two or more separate clouds is usually inappropriate
for PCA, because the groups will often merge into one unsightly blob in the shadow.
That said, a preprocessing step using PCA to project high-dimensional multi-centered
data down to its intrinsic dimensionality may still be useful before further analysis.

Higher dimensions

We can extrapolate our experience from these 3D examples to higher dimensions. How-
ever, it must be said that although useful for building intuition this kind of mental
extrapolation can break down when the number of dimensions is very high. One of the
manifestations of the curse of dimensionality is that feasibly sized samples of data are
always sparse when the number of dimensions is very high. The word “cloud” becomes
misleading because no point is near another, and the points can’t be said to have an
overall characteristic shape (e.g. Hastie et al. [45] Section 2.5, Bishop [9] Section 1.4).
PCA is still useful in high dimensions (in fact often more so), it’s just that our geo-
metric intuition about the dispersion of points in a 2D or 3D cloud may not generalize
when the number of dimensions is high.

For shape models we partially finesse the curse of dimensionality by making distribu-
tional assumptions of approximate normality. In other words, we make the reasonable
assumption that the data is approximately Gaussian even though we can’t formally
infer that—the dimensionality of the space is too high to make a formal inference from
a realistically sized set of training shapes (Section 3.16).

Importance versus variance

Principal Component Analysis equates “importance” with “high variance”. That may
not be valid. We have already seen the multimodal example in the right of Figure A.8
where the highest variance axes don’t reveal what is important about the data.

The letters O and Q are written differently by different people. A shape model with
only the high-variance principal axes will account only for the overall circular shape of
the two letters and variations on that shape—but what matters isn’t necessarily the
overall shape but the tiny glyph that distinguishes an O from a Q. This glyph may not
be represented in the high-variance principal components.
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Figure A.11: Different kinds of linear regression, and principal components.
The short black line shows the residual for one point.
The definition of the residual depends on the form of regression.

A.10 PCA versus linear regression

In a linear regression model, the response or dependent variable is modeled as a constant
offset plus a weighted sum of one or more independent variables. The left plot of
Figure A.11 shows an example for a single independent variable x. The gray dots are
the observed values of x and the response y. The regression line is the model’s estimate
of the value of y for any x. The residuals are the vertical distances between the observed
values and the line.1 The regression line is positioned so the residuals are as small as
possible (more precisely, the sum of the squared residuals is minimized).

In regression there is an asymmetry between the dependent and independent variables.
If the roles of x and y are swapped (so y is the independent and x the dependent
variable), the residuals will be calculated differently and the regression line will be
different (middle plot of Figure A.11).

How do these regression lines compare to the first principal axis? In PCA, the variables
enter the analysis on an equal footing—there isn’t a distinction between independent
and dependent variables. The residuals are the shortest distances from the points to
the regression line, which means that the residuals are orthogonal to the principal axis
(right plot of Figure A.11).

We remark also that the line passes through the mean of the two variables in all three
graphs, and the principal axis lies between the two regression lines.

1Some details: The assumption here is that we know the true value of x, whereas the true value of
y is obscured by noise. The way the residuals are calculated is determined by the way noise is deemed
to enter the regression model (which may be determined by the nature of the data under analysis or
may be a choice that the person building the model is free to make). Here we estimate a noisy y as a
linear function of x. It would be incorrect to use this regression line to estimate x given y; for that we
should use the middle plot in Figure A.11.
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Figure A.12: The principal axis can point
in either direction. The shape of the cloud
of points doesn’t determine which direction
is better.

A.11 Implementation notes

The eigenvectors of the covariance matrix are unique after normalization to unit length,
but only up to a sign change. There is a sign ambiguity because an axis can point in
either direction and mathematically there is nothing in the covariance matrix to estab-
lish which direction is better (Figure A.12). To remove the ambiguity, after generating
the eigenvectors our software negates an eigenvector if necessary so its largest element
is positive. (There will still be ambiguity if the two largest elements are identical in
magnitude but opposite in sign. This is very rare in practice.)

Even though a covariance matrix is at least positive-semidefinite and thus has non-
negative eigenvalues, in practice numeric error may introduce very slightly negative
eigenvalues. Furthermore, because of numeric issues different implementations and ma-
chines can give slightly different values for the smallest eigenvalues. Therefore negative
or very small eigenvalues are set to zero in our software for training shape models.
Eigenvalues less than 10−6 times the largest eigenvalue get zeroed; the 10−6 figure is
fairly arbitrary.

These techniques give more consistency across compilers and machines, which is espe-
cially necessary when running test scripts that check the generated eigenvalues.

A.12 History of PCA

PCA has been reinvented many times in different contexts. It’s thus sometimes known
by different names, such as the Karhunen–Loève transform or the Hotelling transform.
The principal axes are sometimes called the characteristic vectors, the modes of varia-
tion, the principal directions, or the empirical orthogonal functions.

The two papers commonly cited as pivotal are those by Pearson [89] in 1901 and
Hotelling [49] in 1933. Hotelling coined the term “principal component”. The ideas in
these papers became widespread only after computers to do the calculations become
easily available.



Appendix B

Mahalanobis distances

This appendix describes Mahalanobis distances. It first gives an overview. It then dis-
cusses various properties of the covariance matrices used when calculating Mahalanobis
distances.

B.1 Overview

The Mahalanobis distance is a measure of the distance of a point from the center of
the cloud of points, incorporating the probability distribution of the data.

B.1.1 Definition of the Mahalanobis distance

More precisely, the Mahalanobis distance of a point x from the center x̄ of the distri-
bution of those points is defined as:

Mahalanobis distance =

√
(x− x̄)T S−1 (x− x̄) , (B.1)

where x and x̄ are vectors and S is the covariance matrix of the points.1

Although the expression on the right of the equation is a matrix expression, it evaluates
to a scalar. Pictorially:

(B.2)

1This equation is the same as the equation for descriptor distances (Equation 5.2 on page 64), except
that here we use the more general symbol x for the points rather than the g we used for descriptor
vectors.
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Note from the equation that if the covariance matrix S is an identity matrix, then the
Mahalanobis distance is identical to the Euclidean distance from the center of the data:

Euclidean distance =
√

(x− x̄)T (x− x̄) . (B.3)

For one-dimensional (scalar) data, Equation B.1 simplifies to

Mahalanobis distance in 1D =
x− x̄
s

(B.4)

where x̄ is the mean of the data and s is its standard deviation. This equation gives
the distance of the point x from the center of the data in units of standard deviation.
Mahalanobis distances are a multi-dimensional generalization of this measure.

B.1.2 Mahalanobis distances in 2D

We now illustrate Mahalanobis distances using a two-dimensional example. Figure B.1
shows some points drawn from a two-dimensional Gaussian distribution. The setup is
something like an astigmatic dart player throwing darts at the center of a dart board.
(The points in both sides of the figure are identical.)

The density of the points is highest towards the center. Because the points are correlated
the ellipses are tilted. The ellipses are equi-probability contours, meaning that the
chance of a point falling at any place on the ellipse is the same. (To avoid issues raised
by infinitesimal probabilities, assume that the contours have a small non-zero width.)
The shape and orientation of the ellipses is determined by the covariance matrix of the
data. All points on an ellipse have the same Mahalanobis distance from the center.

In the left figure, P and Q are the same Euclidean distance from the center. But the
density of points at P is lower than at Q. Point P is less likely than point Q. The
Mahalanobis distance of P is greater than that of Q.

Figure B.1: Mahalanobis distances on correlated 2D data.
The figures show some points drawn from a two-dimensional Gaussian distribution. The
ellipses are equi-probability contours.
Left Points P and Q are the same Euclidean distance from the center.
Right Points Q and R are the same Mahalanobis distance from the center.
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In the right figure, points Q and R are the same Mahalanobis distance from the center.
They are equally likely to occur. Points Q and R are equally far from the center in this
sense, even though their Euclidean distances are different.

If the data had an identity covariance matrix, the ellipses would be circles, and Maha-
lanobis and Euclidean distances would be identical.

B.1.3 Multidimensional data

Mahalanobis distances incorporate the probability structure of the data; they incorpo-
rate the shape of the cloud. For three-dimensional Gaussian data, the ellipses become
ellipsoids like rugby balls (e.g. Figure A.1 on page 137). The nested ellipses in Fig-
ure B.1 become nested ellipsoids. All points on the surface of an ellipsoid are at the
same Mahalnobis distance from the center of the data. We can’t draw data in higher
dimensions, but the same idea applies. Points with equal Mahalanobis distances from
the center are equally likely.

In the context of ASM descriptor models (Section 5.3 on page 63), if our 1D descriptors
have 9 elements we work in a 9 dimensional space. Each descriptor is a point in that
space. The training descriptors for a landmark are a swarm of points in a 9 dimensional
cloud. At the center of the cloud is the mean descriptor. A descriptor that has a low
Mahalanobis distance is close to the center, close to the mean descriptor.

Mahalanobis distances assume that the data has an ellipsoidal distribution. By far
the most-used ellipsoidal distribution is the Gaussian distribution. In practice the
data may not be exactly ellipsoidal, but Mahalanobis distances may be a good enough
approximation, or at least better than Euclidean distances. The covariance matrix of
the data determines the shape of the ellipsoids—precisely how that works requires an
understanding of quadratic forms, which we won’t go into here.

It should be mentioned that the term “Mahalanobis distance” is also used for a similar
measure of distance between groups of data (rather than between a point and the center
of the data, which is the sense in which we have been using the term). It should also
be mentioned that P. C. Mahalanobis was an Indian statistician who studied distances
between ethnic groups.

That concludes our overview of Mahalanobis distances. For more a more mathematical
treatment see a multivariate statistics textbook such as Johnson and Wichern [53]. The
rest of this appendix focuses on the properties of the covariance matrices necessary to
calculate Mahalanobis distances.

B.2 Invertibility of covariance matrices

The covariance matrix must be invertible because we use its inverse when calculating
Mahalanobis distances (Equation B.1). A covariance matrix is invertible if the variables
used to calculate it are linearly independent. In the ASM setting, this means that there
must be more images than elements in the descriptor vector, or even more images than
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that if some descriptors happen to be duplicated (the gray texture at a landmark of
one training image matches that of another).

In the context of ASMs, this isn’t a concern with realistic numbers of training images.
However, the Stasm test scripts build a model with a small number of images for speed:
the resulting covariance matrices must be forced positive-definite and thus invertible.
We do the forcing using the technique described in Section B.4.

Generally speaking, computation of the inverse of a matrix is to be avoided, because
inversion is sensitive to numerical issues (e.g. [17]). However, in practice these issues
make no material difference for descriptor models. We just remark that it’s possible to
compute Mahalanobis distances without explicitly inverting the covariance matrix, by
first performing a Cholesky decomposition and then solving by conventional substitu-
tion. In MATLAB code (and using notation based on Equation B.1):

L = chol(S);

z = L \ (x - x_bar);

mahalanobis_distance = sqrt(z' * z);

B.3 Positive-definiteness of covariance matrices

This section discusses positive-definiteness of covariance matrices. We will get to the
definition of positive-definiteness shortly, but first it should be explained why positive-
definiteness is a topic of interest. For meaningful Mahalanobis distances (Equation B.1
on page 148), the inverted matrix S must be positive-definite. If it isn’t positive-definite,
the Mahalanobis distance can become negative. The usual meaning of distance breaks
down if distances can be negative—for example, the shortest distance between two
points may not be a straight line. Distances should always be nonnegative, and zero
only if there is a perfect match. (See for example Duda et al. [33] Section 4.6 which
discusses distance as a metric.)

A covariance matrix is always at least positive-semidefinite. It’s strictly positive-definite
if the variables are linearly independent, or equivalently in our ASM context, if we have
a sufficient number of training images. For realistic descriptor models this will always
be the case, so why is it necessary to even raise the issue of positive-definiteness?
Here is a brief answer, which is elaborated on in other sections in the body of this
thesis. During testing and debugging it’s useful to build ASM models with a small
number of images, and the covariance matrices will thus be only positive-semidefinite
(Section B.2). Furthermore, if there are missing points (Section 5.5) or if we “trim”
the matrices (Section 5.7), they no longer will be true covariance matrices, and may
not be positive-definite. Therefore we force them positive-definite using the technique
described in Section B.4.
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B.3.1 Positive-definite matrices

A square matrix S is positive-definite if xTSx > 0 is true for all non-zero vectors x.
(We assume that the dimensions of S and x are conformable.)

Similarly, a square matrix S if positive-semidefinite is xTSx ≥ 0 is true for all non-zero
vectors x. Notice that the only difference from the above definition is that here we use
≥ instead of > .

Readers unfamiliar with positive-definiteness don’t really need to come to grips with the
above definitions for our purposes. You just need to know that positive-definiteness is a
property of some matrices and is important for Mahalanobis distances, as was discussed
above.

Very loosely speaking, positive-definite matrices are like positive numbers, and positive-
semidefinite matrices are like nonnegative numbers. Note that a positive matrix is one
which all the elements are positive, and is in general not the same animal as a positive-
definite matrix. A positive-matrix may or may not be positive-definite, and vice versa.

Figure B.2 illustrates how the quadratic form xTSx varies as x varies for a two-
dimensional vector x. The overall shape of the surface is dependent on the positive
definiteness of the matrix S. Only when S is positive-definite do we get a bowl-shaped
surface that is always greater than zero except when x is zero. This is a property that
we expect of distances. The equi-probability ellipses in Figure B.1 on page 149 are
slices through the bowl.

Figure B.2: Quadratic forms in two dimensions.

The curves plot the value of the quadratic form f(x) = xTSx as the vector
x = [x1, x2] varies.

The positive-definiteness of S determines the overall shape of the curve.
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B.3.2 Properties of positive-definite matrices

Some properties of positive-definite matrices that are important in the current context:

� A covariance matrix is always at least positive-semidefinite. It’s strictly positive-
definite if the variables are independent.

� Positive-definite matrices are invertible, but positive-semidefinite matrices aren’t
invertible. If a matrix is positive-definite then so is its inverse.

� The eigenvalues of a positive-definite matrix are positive, and the eigenvalues of
a positive-semidefinite matrix are nonnegative.

B.3.3 Testing for positive-definiteness

One way of testing for positive-definiteness of a matrix is to calculate its eigenvalues—
if all the eigenvalues are positive the matrix is positive-definite. However calculating
eigenvalues is quite slow (although in the context of ASMs this test is needed only when
training the model, not when using it).

Testing for positive-definiteness can be done more efficiently by attempting a Cholesky
decomposition of the matrix. If a diagonal entry of the attempted Cholesky decomposi-
tion isn’t positive then the matrix isn’t positive-definite. Taking into account numerical
limitations, if a diagonal entry is less than say 10−16, we can say that the matrix isn’t
numerically positive-definite. Such matrices can be forced positive-definite as described
in the next section.

B.4 Forcing positive-definiteness

A square symmetric matrix S can be forced to a “nearby” positive-definite matrix using
the algorithm in Figure B.3. (The algorithm yields a positive-definite matrix that is
near the original matrix in the sense that its eigenvalues are close and it will give
similar Mahalanobis distances, up to discrepancies caused by forcing any nonpositive
eigenvalues positive.)

The algorithm in the figure easily suffices for the covariance matrices in our descriptor
models, where the absolute sum of nonpositive eigenvalues is only a small fraction of the
sum of all eigenvalues (much less than one percent). Thus for our models the covariance
matrices are “nearly positive-definite”. That won’t be the case if large proportions of
the observations are missing. More sophisticated methods are available in that case.
More analysis and methods can be found in Higham [48] and a little more accessibly in
Lucas [69].

To my knowledge the algorithm in the figure was first presented explicitly in my master’s
thesis [75], although given its simplicity it must have been known to mathematicians
for a long time. Another technique for forcing a matrix positive-definite is to add a
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input a symmetric square matrix S that may not be positive-definite

1. Perform a spectral decomposition S = QΛQT where Λ is a diagonal matrix of eigen-
values.

2. Change the diagonal matrix Λ to Λnew by replacing elements on its diagonal that are
smaller than λmin with λmin.
The constant λmin is a small positive value, say λ1 / 108, where λ1 is the largest
eigenvalue.

3. Reconstruct the matrix: Snew = Q Λnew Q
T . The matrix Snew is positive-definite,

because all diagonal elements of Λnew are positive.

output a symmetric square positive-definite matrix Snew that is near the original matrix S

Figure B.3: Forcing a matrix positive-definite.

sufficiently large positive scalar to the diagonal elements, but the approach described
in the figure seems simpler (it doesn’t require determination of the magnitude of a
“sufficiently” large scalar).

B.5 Efficiency when calculating Mahalanobis distances

Some basic techniques can improve runtime efficiency when calculating Mahalanobis
distances:

� We can store the inverted covariance matrix with the model, so the inversion
operation isn’t required when calculating distances when using the model.

� We can exploit the symmetry of the (inverted) covariance matrix to roughly halve
computation time of distances.

� To avoid square roots, we can compare squared distances, rather than the dis-
tances themselves.
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Model Building and Evaluation

This appendix discusses some basic principles of model building and evaluation. It’s not
uncommon to see experimental results in published papers that are invalid because these
fundamental principles are disregarded. The discussion below is general in nature and
not limited to models for landmarking faces. Hastie et al. [45] Chapter 7 is recommended
for a more complete presentation of these topics.

C.1 Overfitting

An overfit model fits the training data well but won’t give good predictions on new data.
The idea is that the training data captures the underlying structure in the system being
modeled, plus noise. We want to model the underlying structure and ignore the noise.
An overfit model models the peculiarities and specific realization of noise in the training
data and is thus too specific to that training data.

An example is a model that beautifully models stock market prices in historical data but
fails miserably at predicting tomorrow’s stock prices. Another example is a landmarking
model trained only on the BioID data. The model may work well at locating landmarks
on BioID faces, but if it’s overfit to the BioID data it won’t work well on other similar
faces (perhaps because it expects an office background).

Some overfitting in flexible models is almost always inevitable. Thus to be credible,
published test results for the final model must show performance on data that is in-
dependent of any data used when building the model. To prevent monkey business, the
test data should be “kept in a vault” until released for final testing of the completed
model. In practice this may be difficult to do.

C.2 Partitioning the data: training, tuning, and testing

This section discusses the datasets needed when building and testing models. Typically
we want to measure our model’s generalization performance, and so want to measure
fitting error on new data, i.e., not on data that was used to train the model. This
should be immediately obvious from the above discussion of overfitting.
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We typically want to measure performance in two scenarios:

1. For parameter selection, i.e., to choose certain key model parameters during the
model building process. For example, for HAT descriptors we need to select the
optimal grid size so we must try a range of grid sizes (as illustrated in Figure 8.7).
The new data is used as parameter-selection data, also commonly called tuning,
model-selection, or validation data.

2. For model assessment, i.e., to measure the performance of the final model. Here
the new data is used as final test data.

We thus require three independent datasets:

(i) the training data,

(ii) the parameter-selection data for (1) above,

(iii) the final test data for (2) above.

It may be excusable under certain conditions to conflate the training and parameter-
selection data (although doing so increases the risk of overfitting), but test results for
the final model should always be measured on independent test data. Any data that
was used for training or parameter selection must be excluded from the test data. No
decisions about the way the model is built should be made from the test data.

A note on linear models. Many of us started learning about statistical modeling by
studying linear models. It’s reasonable to ask why we don’t bother with all the above
datasets with linear models. The answer is that linear models are relatively inflexible,
and with these simple models the difference between the performance1 measured on
the training data and on independent test data is inconsequential, provided certain
assumptions are met. So we don’t need a separate test set. Additionally, when build-
ing a linear model there is no separate parameter-selection step, so we don’t need a
parameter-selection set. This will no longer be true if we adopt a more flexible model-
ing procedure. For example, if we are doing variable selection for a linear model (or if
we have a large number of possibly irrelevant variables), we should measure R2 on data
that is independent of the training data, or adjust R2 as if we had such data. With
more flexible models overfitting becomes more likely, since a flexible model can adapt
to the peculiarities of the training data.

C.3 Cross validation and its hazards

Without access to the three sets of data described above, people resort to other tech-
niques. One such technique is cross-validation. In this section, we assume that the
reader already knows the basics of cross-validation—that is, partition the data into say
10 subsets, repeatedly train a model on all but one of those subsets (the in-fold data,
nine-tenths of the data), and measure performance on the left-out data (the out-of-fold
data, one-tenth of the data). For more explanation see e.g. Hastie et al. [45] Section 7.10
or Duda et al. [33] Section 9.6.

1For linear models performance is usually measured as R2, i.e., the residual sum-of-squares relative
to an intercept-only model.
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Cross-validation, although popular, is prone to subtle errors. Some of these are listed
below. Given how easy it is to make these mistakes, considerable skepticism is warranted
when papers present final model results based on cross-validation.

C.3.1 Independence of observations

The out-of-fold data must play the role of new data. It’s thus important that the
out-of-fold isn’t “contaminated” by the in-fold training data. This implies that the
observations must be independent.

Lack of independence means that the in-fold data used for training is partially dupli-
cated in some sense in the out-of-fold data used for testing, and cross-validation will
tend to give optimistic fits. At a minimum, we should avoid “twinned” observations—
in the context of landmarking models, for example, if the same face appears twice
in a database in similar conditions then use of that database for cross-validation is
questionable.

C.3.2 Pre-tuning

Don’t use a set of data for selecting model parameters, then use the same data for
subsequent cross-validation of the model. Cross-validation must be applied to the
entire model building process. Any parameter that is tuned to the training data must
not be tuned before cross-validation begins.

A word of explanation on the above paragraph. Let’s say we do in fact optimize a
parameter to the full dataset before cross-validation begins. By doing so, we are also
to some extent optimizing to the out-of-fold data used during cross-validation (because
the out-of-fold data is, after all, drawn from the full data). The out-of-fold data is thus
contaminated and can no longer legitimately play the role of independent test data,
and performance measured on the out-of-fold data will appear better than it should.

There are however contexts where it’s acceptable to make decisions before cross val-
idation. Decisions that are made independently of the training data are acceptable.
Decisions about which variables to include that are made independently of the re-
sponse are acceptable. See the comments near the end of Section 7.10.2 in Hastie et
al. [45].

C.3.3 Confusing parameter-selection fitness with final test fitness

If fits obtained by cross-validation are used to select a model’s parameters, then the
final test fit quoted for the selected model must be recalculated for that model using
a new set of independent data. The cross-validation fit used when selecting the model
cannot be quoted as the fitness for that model—that would be optimizing for the test
set by conflating the parameter-selection and test data.
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