
Building Stasm 4 Models

Stephen Milborrow

January 7, 2014

Contents

1 Introduction 4
1.1 Prerequisites . 4
1.2 Non-face objects . 4
1.3 A note on programming philosophy . 5

2 Overview of model building 6
2.1 Output of Tasm . 6
2.2 The model name yaw00 . 7
2.3 Inputs to Tasm . 8
2.4 Training descriptors and .desc files . 8

3 Building a model: an example 9
3.1 Step 1: Build Stasm and Tasm . 9
3.2 Step 2: Prepare the images . 10
3.3 Step 3: Prepare the shapefile . 10
3.4 Step 4: Prepare the landmark table . 10
3.5 Step 5: Prepare the face detector . 11
3.6 Step 6: Primary edits to the source code 11
3.7 Step 7: Possible additional edits to the source code 11

3.7.1 facedet.cpp . 11
3.7.2 initasm.cpp . 12
3.7.3 tasmconf.h . 12
3.7.4 tasmconf.cpp . 12
3.7.5 startshape.cpp . 12
3.7.6 shape17.cpp . 13
3.7.7 convshape.cpp . 14
3.7.8 Scattered constants . 15

3.8 Step 8: Rebuild Stasm and Tasm . 16
3.9 Step 9: Do a trial run of Tasm with a small set of images 16

3.9.1 Tasm prints . 17
3.9.2 Face detector records in the shapefile 17

3.10 Step 10: Rebuild Stasm with new model files 18
3.11 Step 11: Test the new version of Stasm 19
3.12 Step 12: Run Tasm with the complete set of shapes 19
3.13 Step 13: Tune the model . 20

CONTENTS 2

4 Non-faces: the hand example 22
4.1 Step 1: Build Stasm and Tasm . 22
4.2 Step 2: Prepare the images . 23
4.3 Step 3: Prepare the shapefile . 23
4.4 Step 4: Prepare the landmark table . 23
4.5 Step 5: Prepare the “face” detector . 23
4.6 Step 6: Primary edits to the source code 24
4.7 Step 7: Additional edits to the source code 24

4.7.1 facedet.cpp . 24
4.7.2 initasm.cpp . 25
4.7.3 tasmconf.h . 25

4.8 Step 8: Rebuild Stasm and Tasm . 26
4.9 Step 9: Do a trial run of Tasm . 26
4.10 Step 10: Rebuild Stasm with new model files 27
4.11 Step 11: Test the new version of Stasm 27
4.12 Step 12: Run Tasm with the complete set of shapes 28
4.13 Step 13: Tune the model . 28

5 Shapefiles 29
5.1 The Directories string . 29
5.2 Face detector records in the shapefile 29

5.2.1 How to add facedets to a shapefile 31
5.2.2 What triggers generation of facedet.shape? 32
5.2.3 Eyes and mouths in facedet.shape 32

6 The landmark table 33

7 Images generated by Tasm 34
7.1 The landmark images . 34
7.2 The meanshape image . 35
7.3 The shapeN images . 35

8 Marki 36
8.1 Using Marki . 36
8.2 Selecting the current landmark . 37
8.3 The mouse . 38
8.4 Zooming . 38
8.5 Backups . 38
8.6 Preparing an initial shapefile for Marki 39

9 Missing points and three-quarter faces 40
9.1 Example three-quarter model . 40
9.2 The imputed.shape file . 41
9.3 Issues with the above example . 43
9.4 The imputation algorithm . 43

10 Mirroring shapes 45
10.1 The shapemirror utility . 45

CONTENTS 3

11 FAQs and error messages 47
11.1 NELEMS(LANDMARK INFO TAB) 77 does not match the number of points 47
11.2 The application was unable to start correctly (0xc000007b) 47
11.3 Warning: Only plain strings (not regexs) are supported 47
11.4 How to rebuild the models for the released version of Stasm? 47
Bibliography . 48

Chapter 1

Introduction

This manual tells you how to build Stasm models.

Note that this manual is devoted to Stasm Version 4. For Stasm Version 3, model
building is significantly different (see the Stasm version 3 documentation).

1.1 Prerequisites

Some prerequisites are assumed.

You should be comfortable working from the command line and have the basic Unix
utilities like cp on your system (even if working under Windows).

You should be at least somewhat familiar with writing and building C++ programs in
general, including building the Stasm executables from source and doing a stack trace
after a crash.

You should have read the Stasm Version 4 user manual.

You should also be somewhat familiar with Active Shape Models (ASM). Chapters 1
and 2 of [2] are a good basic explanation. For more detail see the Technical Report
by Cootes and Taylor [1]. Stasm Version 4 differs from the classical ASM described in
those references in that it uses HAT descriptors (as well as classical 1D profiles). See [5]
for a description of HATs.

1.2 Non-face objects

Obviously Stasm’s emphasis is on faces. Stasm models can however be created for
objects other than faces, such as medical images. Chapter 4 works through an example
which trains a model for landmarking images of human hands.

For ease of explanation this manual usually uses the term “face”, so please mentally

1.3 A note on programming philosophy 5

substitute the name of your object where necessary. Even if your ultimate goal is to
train a model for other types of object, it’s probably best to first work through the
sections on training face models.

1.3 A note on programming philosophy

The Stasm code is structured to make it easy for users of the landmark search library
to understand the code. It is not really structured for ease of building and tuning
new models. Thus model constants are defined near where they are used (which is
convenient when reading the code) rather than in a single central file (which would be
convenient for building new models).

For example, the constant BINS PER HIST (which defines the number of bins in a HAT
histogram) is static to hat.cpp. Another example is

static const int stasm_NLANDMARKS = 77; // number of landmarks

in stasm lib.h. When building a new model, we may have to modify the definition of
stasm NLANDMARKS by modifying stasm lib.h.

Having said that, where possible Tasm specific definitions are grouped together in
tasmconf.h, and most model-specific definitions are in the MOD 1 directory. In practice
there are usually only a few places where source code has to be modified when building
new models. These are carefully enumerated in Sections 3.6 and 3.7.

Chapter 2

Overview of model building

New Stasm models are built by running Tasm (for “train ASM”). Some modifications
to the source code are also necessary.

2.1 Output of Tasm

Figure 2.1 is an overview of the model-building process, and shows the files output by
Tasm.

The primary outputs are the machine generated C++ include files. These go into
the mh subdirectory and have a .mh suffix (for “machine generated .h”). See the
stasm/MOD 1/mh directory for an example. Tasm generates the following mh files:

1. The shape model (yaw00 shapemodel.mh). This defines the mean shape, the
eigenvalues, and the eigenvectors.

2. The descriptor models, one for each landmark at each pyramid level. Examples
are yaw00 lev0 p00 classic.mh (which defines the descriptor model for pyramid
level 0 point 0, which uses a classical 1D profile) and yaw00 lev2 p57 hat.mh

(which defines the descriptor model for pyramid level 2 point 57, which uses a
HAT descriptor).

3. The list of descriptor models (yaw00.mh). This is a list of references to the
model files just mentioned.

Files in the log subdirectory are primarily for checking the model.

2.2 The model name yaw00 7

Figure 2.1: Overview of the model-building process.

2.2 The model name yaw00

All of the files mentioned above are prefixed by the model name yaw00. This name can
be changed by changing TASM MODNAME before running Tasm.

However, this name is not really important. Historically it refers to faces with a yaw of
0 degrees, i.e. frontal faces. Different names are in fact only necessary for multi-view
models. The source code for that is not ready for release but our approach to multi-view
models is described in [3].

2.3 Inputs to Tasm 8

2.3 Inputs to Tasm

Figure 2.1 shows the inputs to Tasm.

The shapefile is a text file listing the name of each image and its landmark positions
(Chapter 5). Associated with each face in the shapefile are optional attribute bits
(atface.h). For example, we can tag that the face is wearing glasses or has facial hair.

The landmark table is a C++ .h file listing each landmark and its characteristics
(Chapter 6). For example, it specifies for each landmark whether a landmark uses
a classical 1D profile or a HAT descriptor. We can also specify for example that a
landmark is an eye landmark, so when building the descriptor model Tasm should
ignore the landmark if the face is wearing glasses. (This is a nicety that usually has
only a small effect on the generated model.) See the function PointUsableForTraining

for details.

The face detector is necessary during training because Tasm needs to figure out how
to place the mean shape relative to the face detector frame. This is because prior to
an ASM search, we form the start shape by aligning the mean shape to the detected
face rectangle. (Actually in the default model we align to the rectangle only if the eyes
cannot be detected.)

The tasmconfig.h file has Tasm specific definitions, such as the model name:

static const char* const TASM_MODNAME = "yaw00";

Other miscellaneous definitions necessary for Tasm and Stasm are scattered through
the source code. For example stasm NLANDMARKS is defined in stasm lib.h.

2.4 Training descriptors and .desc files

A bit of background on the training descriptors. (We use the term “descriptor” in a
general sense to mean both classical 1D profiles and HAT descriptors.) For each land-
mark at each pyramid level in each training image, Tasm generates a positive training
descriptor at the correct position of the landmark. For classical 1D profiles, the pos-
itive data is all we need (because from this data Tasm can generate the mean profile
and the covariance matrix). However, for HAT descriptors, Tasm also generates one or
more negative training descriptors displaced randomly from the correct position of the
landmark (since Tasm needs to build a regression model which estimates if an image
patch is situated on or off the correct position). See GenAndWriteDescMods for details.

If Tasm’s -w command line flag is used, Tasm writes the training descriptors to .desc

files. You can then do experimental analysis of this data outside of Tasm.

Chapter 3

Building a model: an example

This section describes in detail how to build a new model for faces. For a non-face
example, please see Chapter 4 (although we recommend that you work through this
chapter anyway).

For concreteness, we will build a 68-point frontal face model using the MUCT face
data [4]. These 68 point definitions are very close to the XM2VTS definitions.

Note 1: The released version of Stasm was trained on MUCT data landmarked with
77 points, not the 68 point shapefile used in this chapter’s example. See the FAQ
Chapter 11.

Note 2 (for users of the Multi PIE faces): We emphasize that the MUCT/XM2VTS
68 points are not the same as the 68 points of the Multi PIE data. If you are preparing
a model using the 68 point Multi PIE data, then you will need to modify the Stasm
source code — grep for the string 68. But before you do that, first work through this
example using the MUCT 68 points.

3.1 Step 1: Build Stasm and Tasm

Copy the Stasm source code to a working directory and check that you can rebuild
Stasm from scratch.

The file paths in this document assume that we are working in the same directory as
the make files (or makefile include files). That is we are working in vc10, vc10x64,
mingw, or similar, which could also be a directory of your own name at the same level. To
verify that our working directory is correct, the following should correctly list stasm.h:

ls ../stasm/stasm.h

3.2 Step 2: Prepare the images 10

3.2 Step 2: Prepare the images

The first step after ensuring that we can build Stasm is to prepare the images. For this
example, simply download the images from the MUCT website http://www.milbo.

org/muct and put them into a local directory. It’s probably most convenient to put all
the MUCT images in one directory, but you don’t have to.

3.3 Step 3: Prepare the shapefile

The shapefile must now be prepared (Chapter 5). For this example, we will use a
shapefile muct68 nomirror.shape provided with the Stasm source code.

Edit the Directories string (Chapter 5.1) in the shapefile for the location of the images
we downloaded above.

For safety, we recommend that you keep shapefiles read-only unless you are actively
editing them:

chmod 444 ../tasm/shapes/*.shape

Use Marki to verify the landmarks in the shapefile (Chapter 8):

marki -V ../tasm/shapes/muct68_nomirror.shape

Notes on this shapefile

The nomirror in the filename indicates that mirrored shapes are not included in the
shapefile. We use a non-mirrored shapefile in this example simply so we don’t have to
generate the mirrored images before we run the example (Chapter 10).

(The file muct68.shape includes mirrored shapes. It and several other shape files are
included in the more zip file on the Stasm web page.)

In this shapefile, the coordinate system has 0,0 at the top left, as opposed to the
coordinate system used in the older versions of Stasm and also on the MUCT webpage,
where 0,0 is the center of the image.

This shapefile includes facedets (Section 3.9.2).

3.4 Step 4: Prepare the landmark table

The landmark table describes the attributes of each point (Chapter 6). For example,
it specifies if we generate a classical 1D profile or a HAT descriptor at the point.

http://www.milbo.org/muct
http://www.milbo.org/muct

3.5 Step 5: Prepare the face detector 11

The landmark table should be created before running Tasm. In this example we will
use the provided MUCT 68 point landmark table landtab muct68.h. In Section 3.6
we will modify landmarks.h to invoke this landmark table.

3.5 Step 5: Prepare the face detector

We will use the OpenCV frontal face detector file currently used by Stasm,
haarcascade frontalface alt2.xml.

More generally, for non-frontal faces or for objects other than faces, we will need to gen-
erate a new XML file by training a new detector, typically with the OpenCV tools. We
would be interested in hearing from you if you plan to do so. You can do a basic check
of a new detector by examining the images generated by Stasm with TRACE IMAGES

defined.

3.6 Step 6: Primary edits to the source code

Make changes to the source files as follows.

In stasm lib.h, change

static const int stasm_NLANDMARKS = 77;

to
static const int stasm_NLANDMARKS = 68;

In landmarks.h, change

#include "landtab_muct77.h"

to
#include "../tasm/landtab/landtab_muct68.h"

3.7 Step 7: Possible additional edits to the source

code

We will often also need to change the code as described in this section (Section 3.7).
However, for the current 68-point example none of the changes listed in this section are
necessary.

3.7.1 facedet.cpp

If necessary, change the face detector from haarcascade frontalface alt2.xml to
your new face detector file. You may also want to change the definitions of SCALE FACTOR,
MIN NEIGHBORS, and DETECTOR FLAGS.

3.7 Step 7: Possible additional edits to the source code 12

3.7.2 initasm.cpp

We may need to change the arguments to the constructor for mod yaw00. These changes
affect the landmark search, but don’t affect Tasm.

eyaw is used to (i) guide the selection of the start shape in startshape.cpp and (ii)
to choose the appropriate submodel in multi-model versions of Stasm (not released). If
we are working with non-frontal faces (Chapter 9), we should change eyaw and make
the appropriate downstream changes (Section 9.3).

estart determines if we should use the eyes and mouth to help position the start shape
in startshape.cpp.

Sections 3.7.5 and 9.3 describe eyaw and estart in more detail. The e in eyaw and
estart is a naming convention indicating that these are enums.

neigs and bmax control the shape model. The only reliable way to adjust these values
(as for most model constants) is to test a range of values by building and tuning a
variety of models (Section 3.13).

hackbits is ignored unless the shapes have 77 points. It is used by the code that
corrects absurd point positions (e.g. the chin inside the mouth). This correction is
done during the landmark search at coarse pyramid levels after the points have been
conformed to the shape model.

3.7.3 tasmconf.h

The file tasmconf.h has a number of definitions for Tasm. Please see the file for details.

3.7.4 tasmconf.cpp

The tasmconf.cpp file has code that may have to change if we are using a different
face detector or if our shape format cannot be converted to a shape17 (Section 3.7.6).

The function FaceDetFalsePos in tasmconf.cpp is used by Tasm to check if the face
detector box is positioned correctly (using the the shape from the shapefile as a refer-
ence). Badly positioned detects (i.e. false positives) are ignored by Tasm. It has some
code customized for frontal faces which requires conversion to shape17s.

3.7.5 startshape.cpp

The start-shape code is driven by the setting of estart in initasm.cpp. The start-
shape code is invoked when doing a landmark search but not when running Tasm.

3.7 Step 7: Possible additional edits to the source code 13

Figure 3.1:
Eye and mouth search rectangles

This image was generated by
building Stasm with TRACE IMAGES

defined.

enum ESTART // do we use the detected eyes or mouth to help position the startshape?

{

ESTART_RECT_ONLY, // use just the face det rect to align the start shape

ESTART_EYES, // use eyes if available (as well as face rect)

ESTART_EYE_AND_MOUTH // uses eye(s) and mouth if both available

};

With a new model, for easily working code (but probably non-optimal fits), set estart
to ESTART RECT ONLY. This tells the start shape code to use just the detected face
rectangle to position the start shape. For non-faces, use ESTART RECT ONLY.

For frontal faces, we get better results with ESTART EYES, which tells the start shape
code to first detect the eyes and use their positions if available to position the start
shape. The eye positions are also used to rotate the face upright, of special ben-
efit for HAT descriptors which have limited ability to handle object rotation. See
StartShapeAndRoi.

Use ESTART EYE AND MOUTH to also use the mouth to position the start shape. In our
experience this gives better results for three-quarter faces but not for frontals. Your
mileage may vary.

If eye or mouth detection is necessary, the OpenCV eye and mouth detectors will be
initialized and invoked before generating the start shape. These detectors are dependent
on the face detector used, because they depend on the way the face detector rectangle
frames the face, because the eye and mouth search areas are defined as a subset of this
rectangle (Figure 3.1). Build Stasm with TRACE IMAGES to generate images that show
these areas. The existing start shape code is optimized for the current OpenCV frontal
face detector. For other face detectors you will probably have to adjust the hard-coded
constants in startshape.cpp.

3.7.6 shape17.cpp

Most face landmark schemes can be converted to what we call a shape17. A shape17
has a standard set of 17 points (Figure 3.2). These are the same as Cristinacce’s me17

3.7 Step 7: Possible additional edits to the source code 14

Figure 3.2: The shape17 points.

We can convert any set of
face landmarks to this lowest-
common-denominator set of
points.

points.

Converting to a shape17 is convenient when we need the positions of the eyes and
mouth regardless of whether the original shape format has 77, 68, 22, etc., points. For
example, we may need the eye-mouth distance. Shape17s are also used to calculate the
me17 fitness measure.

You will have to extend the code in shape17.cpp if it does not already support conver-
sion of your shape format to a shape17. (It currently supports AR, BioID, XM2VTS,
and a few other formats.) You can check your changes by running Tasm and looking at
shape17.bmp in the Tasm log directory (Figure 3.3). Tasm does some automatic sanity
checks but cannot check everything (see SanityCheckShape17).

Some shape formats do not define the eye pupils. These can be approximated in the
shape17 from surrounding landmarks. Adjustments can also be made for minor differ-
ences in point definitions — for example, the nostril points may be at the top of the
nostrils instead of in the center.

Note for Multi PIE 68 users: The 68 point shapes currently supported by shape17.cpp

are the XM2VTS/MUCT points. They are not the Multi PIE 68 points. See Note 2 in
the introduction to Chapter 3 (page 9).

3.7.7 convshape.cpp

The file convshape.cpp has code for converting a shape format to another format (e.g.
from 77 points to 68 points). In the special case where the output shape has 17 points,
it calls the shape17 code (Section 3.7.6).

We may need to convert our shapes to a different number of points for testing. For
example, if we use the Swas utility to measure fits with our model on the BioID faces
(Section 3.13), we will need to convert the shapes to the 20 point BioID shapes.

Check the changes to convshape.cpp by running Tasm and looking at the shapeN.bmp

3.7 Step 7: Possible additional edits to the source code 15

Figure 3.3: An example of incor-
rect conversion to shape17 (the
table in shape17.cpp is wrong).

The points seem correct at first
glance, but actually the mouth
corner points are misnumbered.
Subtle problems may occur when
running Tasm or Stasm.

Tasm creates log images for
catching this kind of mistake.

images in the log directory (where N is the converted number of points).

3.7.8 Scattered constants

There are other constants in the code which affect the generated model. The default
settings of these are probably near optimal for 68 point faces (because that is similar
to the 77 point model that Stasm was tuned for). Some of these constants are listed
below. See the source code for details. If in doubt leave them as they are.

int EYEMOUTH_DIST = 100; // scale image to this before ASM search starts

double PYR_RATIO = 2; // scale image by 2 at each pyramid level

int N_PYR_LEVS = 4; // number of levs in image pyramid

int SHAPEMODEL_ITERS = 4; // shape model iterations per pyr level

int EYE_MIN_NEIGHBORS = 3; // for the OpenCV eye detector

int MOUTH_MIN_NEIGHBORS = 3; // for the OpenCV mouth detector

double MIN_MOUTH_WIDTH = .27; // as frac of face width

int TASM_1D_PROFLEN = 9; // length of classic 1D profiles

// constants for the HAT descriptors

int GRIDHEIGHT = 4; // 4 x 5 grid of histograms in descriptor

int GRIDWIDTH = 5;

int BINS_PER_HIST = 8; // 8 gives a 45 degree range per bin

double WINDOW_SIGMA = .5; // gaussian window as frac of patch width

double FINAL_SCALE = 10; // arb but 10 is good for %g printing of descriptors

int HAT_MAX_OFFSET = 4; // search grid +-4 pixs from current posn

int HAT_SEARCH_RESOL = 2; // search resolution, search every 2nd pixel

int HAT_PATCH_WIDTH = 9*2+1;

int HAT_PATCH_WIDTH_ADJ = -6;

int HAT_START_LEV = 2; // HAT descriptors are for pyr levs 0...2

We make special mention of HAT START LEV. Tasm will generate classical 1D profiles

3.8 Step 8: Rebuild Stasm and Tasm 16

for all points at pyramid levels higher than HAT START LEV, regardless of the AT Hat

bits in the landmark table. If you want HAT descriptors for all pyramid levels, change
HAT START LEV to a value bigger than any pyramid level (say 9).

In the default model, HAT descriptors are not used at low pyramid resolutions. More
precisely, the default model uses classical 1D gradient descriptors at the coarsest pyra-
mid level and on the jaw points at all pyramid levels, and HAT descriptors otherwise.
That is what gave the best results during model tuning.

3.8 Step 8: Rebuild Stasm and Tasm

After making the above changes to the source code, rebuild the Stasm executables.
Make sure Tasm gets rebuilt.

3.9 Step 9: Do a trial run of Tasm with a small set

of images

Run Tasm on just 100 images as follows:

tasm ../tasm/shapes/muct68_nomirror.shape 100 0 [ade]

This call to Tasm builds a model from the first 100 faces in the shapefile. This low
number of shapes allows us to quickly build a model to iron out obvious errors. For
even more speed, decrease the 100 on the above command line to 3, although this will
cause a few extra messages. (These are harmless for our trial purposes here. There
will not be enough profiles to build the profile model covariance matrices, so Tasm will
generate identity matrices for the covariance matrices.)

The string [ade] is a regular expression specific to this example telling Tasm to use
only the frontal faces in the MUCT set. It tells Tasm to use only faces with a, d, or e in
their names, that is, only approximately frontal faces. See the MUCT documentation
for the MUCT file naming conventions.

(The b shapes could also be included in this example, since they are also more-or-
less frontal. But they have missing points, and so for maximum simplicity have been
omitted.)

Note that no points are missing in this subset of shapes. Chapter 9 discusses how
to build a model with shapes with missing points. By convention in Stasm missing
points have coordinates 0,0. (Our in-house approach has been to manually landmark
points as missing if they are obscured by a hand or the side of the face or nose. We do
not mark points obscured by glasses or thinnish hair as missing, but instead estimate
their position during manually landmarking. There is a certain amount of arbitrariness
about such decisions.)

3.9 Step 9: Do a trial run of Tasm with a small set of images 17

Tasm results go to the tasmout directory. You should do a manual sanity check on the
images in tasmout/log. See Section 7.

Use tasm -? for further details on the Tasm command line.

Note for UNIX-like systems

The Stasm code currently supports regular expressions only with the Microsoft com-
piler. (It is difficult for us to provide a universal solution because regular expression
libraries are currently compiler dependent, and we are reluctant to require say the
Boost libraries to build Stasm.) But this should be easily fixable for your particular
compiler. Search the Stasm sources for HAVE REGEX to see what has to change. A
simpler work-around is to run the example without the regular expression:

tasm ../tasm/shapes/muct68_nomirror.shape 100

Tasm will use all shapes, not just the ones matching [ade], but it doesn’t really matter
for this example. Another work-around is use a new shapefile created by extracting
only the shapes that you are interested in from the existing shapefile. (We use awk or
Emacs keyboard macros for this kind of thing.)

3.9.1 Tasm prints

Figure 3.4 show the prints from Tasm for this example. There may be minor differences
on your system, depending on the version of Tasm, directory names, etc.

Messages ending in ... indicate that Tasm has printed just the first of such similar
messages. Further similar messages go into the log file tasm.log, but to reduce clutter
are not printed on the screen. Actually only the first 100 such messages go to the log
file. That is usually enough to debug problems. See the function PrintOnce.

3.9.2 Face detector records in the shapefile

Tasm invokes the face detector to figure out how to align the mean face to the mean
face detector frame.

In the shapefile used in the current example, the facedets are pre-saved in the shapefile.
For speed, Tasm uses these pre-saved facedets instead of invoking the face detector for
each image.

More generally, if your shapefile does not have facedets, you can add them to the
shapefile as described in Section 5.2. The only advantage is that Tasm runs faster.
This matters during model tuning where we may want to build dozens of models.

3.10 Step 10: Rebuild Stasm with new model files 18

>tasm ../tasm/shapes/muct68_nomirror.shape 100 0 [ade]

rm -f tasmout/log/* # tasm removes stale files

rm -f tasmout/mh/*

Generating tasmout/log/tasm.log # tasm logs to tasm.log

Reading ../tasm/shapes/muct68_nomirror.shape: 3755 shapes

Using the first 100 shapes matching [ade] and mask 0x700 0x0 (i000qa-fn ... i011qa-mn)

(Mask0 0x700 is BadImg Cropped Obscured) # shapes with these attrs skipped, TASM_DISALLOWED_ATTR_BITS

--- Generating the shape model ---

Reference shape i000qa-fn is at index 0 and has 68 landmarks # ref shape used for aligning shapes

Mean shape outermost points (0,13) angle -5.89 degrees, eye angle 2.67 degrees

88% percent variance is explained by the first 10 shape eigs: 37 14 11 6 5 5 3 2 2 1%

Generating mean shape aligned to the facedets

100.00% of shapes with all landmarks have a facedet in the shapefile

will not run the facedet on the actual images (will use just the facedets saved in the shapefile)

Done generating mean shape aligned to the facedets # Tasm prints a summary of the shapes used

100 faces detected (100.00%), 100 facedets in the shapefile, 0 facedets in the images

0 facedet false positives, 0 shapes with missing landmarks

100 faces actually used (valid facedet and all points) (100.00% of the shapes in the shapefile)

0 missing both eyes, 0 missing just left eye, 0 missing just right eye, 0 missing mouth

Generating tasmout/mh/yaw00_shapemodel.mh

[0.3 secs to generate the shape model]

--- Generating images for manual checking of the 68 point landmark table ---

tasmout/log/landmark00.bmp... # an image for each point 0...67

tasmout/log/meanshape.bmp

tasmout/log/shape17.bmp # the shape after conversion to a shape17

tasmout/log/shape_all68.bmp # all 68 points

--- Generating yaw00.mh from the landmark table ---

Generating tasmout/mh/yaw00.mh

--- Generating the descriptor models from 100 shapes ---

Pyramid level 0 reading 100 training images 0_1_2_3_

ignoring eye in i003se-f3 (tag 0x800)... 4_5_6_7_8_9_0 [4.1 secs]

Generating pyramid level 0 models

Generating tasmout/mh/yaw00_lev0_p00_classic.mh...

0_1_2_

Generating tasmout/mh/yaw00_lev0_p15_hat.mh...

3_4_5_6_7_8_9_0 [1.5 secs]

Pyramid level 1 reading 100 training images 0_1_2_3_4_5_6_7_8_9_0 [1.6 secs]

Generating pyramid level 1 models 0_1_2_3_4_5_6_7_8_9_0 [1.1 secs]

Pyramid level 2 reading 100 training images 0_1_2_3_4_5_6_7_8_9_0 [1.0 secs]

Generating pyramid level 2 models 0_1_2_3_4_5_6_7_8_9_0 [1.0 secs]

Pyramid level 3 reading 100 training images 0_1_2_3_4_5_6_7_8_9_0

in point 27, only 97 descriptors used from 100 shapes because some points were skipped...

Generating pyramid level 3 models 0_1_2_3_4_5_6_7_8_9_0 [0.6 secs]

[Total time 14.6 secs, 47% physical mem all processes, 34MB peak this process]

Figure 3.4: Tasm prints for the MUCT 68 point example (trial run with 100 shapes).

3.10 Step 10: Rebuild Stasm with new model files

Once we get a clean run of Tasm, copy the machine generated C++ files to the MOD 1
directory:

rm ../stasm/MOD_1/mh/* # not essential but prevents mixing old and new files

cp tasmout/mh/* ../stasm/MOD_1/mh

Rebuild the Stasm executables.

3.11 Step 11: Test the new version of Stasm 19

Note that we can avoid the above copying step by running Tasm as follows:

tasm -d ../stasm/MOD1 ../tasm/shapes/muct68_nomirror.shape 100 0 [ade]

which puts the output subdirectories directly into the ../stasm/MOD1 directory. This
is often convenient, but the danger is that if we have a faulty or partial build of the
mh files, we will be unable to re-build the Stasm executables. Recover from this by
restoring the mh directory from the original Stasm sources.

3.11 Step 11: Test the new version of Stasm

After rebuilding Stasm above, do a basic test of our new version of Stasm with

stasm ../data/testface.jpg

There should be no error or warning messages. Manually examine the output image
testface stasm.bmp (Figure 3.5). The shape is roughly positioned correctly on the
face but the eye and mouth corners are quite off. That’s not suprising because we used
only 100 images to build the model.

3.12 Step 12: Run Tasm with the complete set of

shapes

Repeat Steps 10 and 11, but run Tasm with the full set of faces (instead of just 100):

tasm -d ../stasm/MOD1 ../tasm/shapes/muct68_nomirror.shape 0 0 [ade]

and rebuild and test the model.

Figure 3.5: An image landmarked by the
100-shape model.

3.13 Step 13: Tune the model 20

More generally, you may get somewhat better results if you enlarge the training set by
including mirrored faces. Do this as described in Chapter 10. Or mirror the images
yourself (using tools such as Photoshop or GraphicsMagick) and use the shapefile which
includes the mirrored shapes muct68.shape (included in the more zip file on Stasm web
page).

3.13 Step 13: Tune the model

To measure our model’s performance, run the Swas utility on a tuning set. For example:

swas -i ../tasm/shapes/muct68_nomirror.shape 300 2013 a

This runs Swas on 300 frontal faces randomly chosen with seed 2013 from the MUCT
set. The string a matches only strictly frontal faces.

The -i flag tells Swas not to generate images, for speed. Use swas -? and see the
Swas source code for details.

Note: The above example uses the training set to tune the model. Preferably but
not essentially, the tuning set should be disjoint from the training set to minimize
overfitting. The danger is that we will create a model that works very well on the
training set but doesn’t generalize well to new data. More importantly, the training
and final test set should be disjoint. See for example Section 4.2 of [2] or indeed any
book on modern statistical modeling.

When Swas generates images (no -i flag), it prefixes the image name with the fitness
(e.g. 0.064 imagename me17.bmp where 0.064 is the me17 fitness). Thus for manual
eyeballing the images are conveniently ordered in the directory with the worst fits last.

The Swas fit results go to a “fit” file in the fit directory. The fit file name depends on
the parameters we pass to Swas. Use MATLAB or similar to analyze and plot the fit
file. Our personal weapon of choice is the R language with the provided file swas.R.
Edit the top of that file to reference your fit file(s).

You may of course prefer to create your own utility instead of Swas, or modify Swas
for your purposes.

Tuning the model

To tune the model, change constants in the source code, then rebuild and re-test the
model. You could start by changing neigs and bmax in initasm.cpp (Section 3.7.2).
Try something like neigs=30 and bmax=3, but really for the 68 point model the existing
values are probably already close to optimal. Typically for this kind of thing we use a
shell script or Python script which builds and tests a range of values.

Some changes require rebuilding the model; others just require a re-compile:

Example 1: Changes to TASM 1D PROFLEN require rebuilding the model, to build mh files
with 1D profiles with the new length.

3.13 Step 13: Tune the model 21

Example 2: Changes to neigs or bmax in initasm.cpp require just a re-compile because
these constants are used only during searching.

Extending the code that converts the shape format

For testing against arbitrary shapefiles, we may need to extend shape17.cpp and
convshape.cpp. This will be necessary if the shapefile has a different number of points
from the shapefile. See Sections 3.7.6 and 3.7.7.

For example, let’s say we are using Swas to test our 68 point model on the 20 point
BioID faces:

swas -i ../data/bioid.shape

For the 68 point shapes, the current code supports conversion to shape17s but not to
BioID shapes. Swas will thus generate a fit file with me17s, but not with fits measured
against all 20 BioID points (the meanfit column in the fit file will have the special
value 0.9999).

To remedy this, extend the case statement in ConvertShape by creating and calling
the function Shape68As20. You can check the changes to ConvertShape by running
Tasm and looking at shape20.bmp in the Tasm log directory.

Chapter 4

Non-faces: the hand example

This section describes how to build a new model for objects that are not faces. We
will build a toy model using Mikkel Stegmann’s hand data generated at the Technical
University of Denmark (Figure 4.1).

The word “toy” is used because there are only 40 training images. Also, the hand
detector we will use was created for this chapter and was trained on just these 40
images. It is a poor hand detector, but suffices for this example.

4.1 Step 1: Build Stasm and Tasm

Copy the Stasm source code to a working directory and build Stasm from scratch.

Figure 4.1:
An example from the Stegmann DTU
hand dataset with 56 manually landmarked
points.

This data is downloadable from
http: // www2. imm. dtu. dk/ ~ aam

http://www2.imm.dtu.dk/~aam

4.2 Step 2: Prepare the images 23

4.2 Step 2: Prepare the images

Download the hand images from DTU website http://www2.imm.dtu.dk/~aam and
put them into a local directory.

4.3 Step 3: Prepare the shapefile

We will use hands.shape which is provided with the Stasm source code. (This shapefile
was created by reformatting the landmark data downloaded from the DTU website.)

Edit the Directories string (Chapter 5.1) in hands.shape for the local directory of
the images we downloaded above.

Use Marki to verify the landmarks in the shapefile (Chapter 8):

marki -V ../tasm/shapes/hands.shape

4.4 Step 4: Prepare the landmark table

We will use the provided 56-point hands table landtab hands.h and incorporate it into
the code in Section 4.6.

4.5 Step 5: Prepare the “face” detector

We will use the hand detector hands toy.xml provided with Stasm, and incorporate it
into Stasm in Section 4.7.1.

As mentioned above, this is a toy hand detector. It suffices for this example, but it
won’t reliably detect arbitrary hands and returns a lot of false positives (it thinks there
are hands everywhere). We will work around the false-positive issue in Section 4.7.1
where we change minwidth to 50% (so the detector only finds hands that are larger
than 50% of the image width).

More generally, if you do not yet have a detector for your object, but your objects
are always positioned at roughly the same place in the image, you may want to build
a provisional dummy detector that always returns the same rectangle. Do this by
modifying the DetectFaces function to something like the code below (the constants
below are approximately correct for the current hand data but have not been optimized):

http://www2.imm.dtu.dk/~aam

4.6 Step 6: Primary edits to the source code 24

void DetectFaces(// approximate position of hand returned in detpars

vec_DetPar& detpars, // out

const Image& img, // in

int minwidth) // in: ignored (func signature compatibility)

{

if (img.cols != 800 || img.rows != 600) // sanity check

Err("Image must be 800x600 (your image is %dx%d)", img.cols, img.rows);

DetPar detpar;

detpar.x = 350; // approximate center of hands

detpar.y = 350;

detpar.width = 600; // approximate size of hands

detpar.height = 400;

detpar.yaw = 0;

detpar.eyaw = EYAW00;

detpars.resize(1);

detpars[0] = detpar;

}

4.6 Step 6: Primary edits to the source code

Make changes to the source files as follows.

In stasm lib.h, change

static const int stasm_NLANDMARKS = 77;

to
static const int stasm_NLANDMARKS = 56;

In landmarks.h, change

#include "landtab_muct77.h"

to
#include "../tasm/landtab/landtab_hands.h"

4.7 Step 7: Additional edits to the source code

Depending on the object you are landmarking, you may need to make the code changes
described in Section 3.7. For the current hands example we need to change only
initasm.cpp, facedet.cpp, and tasmconf.h as described in the next three subsec-
tions.

4.7.1 facedet.cpp

In facedet.cpp make the following changes:

1. Change

OpenDetector(facedet_g, "haarcascade_frontalface_alt2.xml", datadir);

to

4.7 Step 7: Additional edits to the source code 25

OpenDetector(facedet_g, "../tasm/landtab/hands_toy.xml", datadir);

2. Add the following line of code to DetectFaces before the initialization of minpix:

minwidth = 50; // force minwidth to reduce false positives with toy detector

This says that the minimum width of a hand must be 50% of the image width,
as a work-around for the propensity of our toy hand detector to generate false
positives. (The command line help for some executables will now be wrong,
where the help says that you can change minwidth from the command line. For
our current purposes we don’t really care that the help is wrong.)

4.7.2 initasm.cpp

In the constructor for mod yaw00 in initasm.cpp:

1. Change estart to ESTART RECT ONLY. This tells the start shape code to use the
position of the detected hand rectangle to position the start shape, and not to
search for eyes and mouths.

2. Change neigs and bmax to 10 and 3. These values are probably not optimal but
allow us to get started.

3. Change hackbits to 0. Not essential (because the shape hacks code ignores
shapes without 77 points) but makes it clearer that the hackbits code is not
activated.

The resulting code should look like this:

static const Mod mod_yaw00(// constructor, see asm.h

EYAW00, // eyaw

ESTART_RECT_ONLY, // estart

datadir,

yaw00_meanshape,

yaw00_eigvals,

yaw00_eigvecs,

10, // neigs

3, // bmax

0, // hackbits

YAW00_DESCMODS, // defined in yaw00.mh

NELEMS(YAW00_DESCMODS));

4.7.3 tasmconf.h

In tasmconf.h make the following changes:

1. Change

static const bool TASM_DET_EYES_AND_MOUTH = true;

to

4.8 Step 8: Rebuild Stasm and Tasm 26

static const bool TASM_DET_EYES_AND_MOUTH = false;

This tells Tasm not to call the eye and mouth detectors when creating facedet.shape.
This is not essential, but prevents irrelevant messages from Tasm about failing to
find eyes and mouths in images of hands.

2. Change

static const int TASM_FACEDET_MINWIDTH = 10;
to

static const int TASM_FACEDET_MINWIDTH = 50;

This is not essential, because we have already forced minwidth to 50 in Sec-
tion 4.7.1.

Note that we don’t need to change the model name yaw00, but as a nicety we could
change that to say hands (Section 2.2).

4.8 Step 8: Rebuild Stasm and Tasm

After making the above changes to the source code, rebuild the Stasm executables.
Make sure Tasm gets rebuilt.

4.9 Step 9: Do a trial run of Tasm

Since in this toy example all we have is a small set of images, we can actually use all
available images for the trial run:

tasm -d ../stasm/MOD1 ../tasm/shapes/hands.shape

Figure 4.2 show the prints from Tasm for this example. There may be minor differences
on your system, depending on the version of Tasm, directory names, etc.

Note that Tasm issues the message

Do not know how to convert a 56 point shape to a 17 point face...

The shape17 code (Section 3.7.6) does not know how to convert a 56 point hand to a 17
point face (which is correct, because hands cannot be converted to faces). The shape17
code is invoked when normalizing the shape before the ASM search begins:

stasm_search_auto_ext -> ModSearch_ -> GetPrescale -> EyeMouthDist -> Shape17OrEmpty

We can simply ignore the message, or easily supress it by commenting out the code
that issues the message. Or better, write a custom GetPrescale function for our shape
format. In the current implementation (EyeMouthDist), if the eye-mouth distance is
not available Stasm falls back to using half the shape’s horizontal extent. That approach
is vulnerable to a single outlying point. A better approach may be to scale the hand so
the mean distance of points from the hand centroid is say 100 pixels.

4.10 Step 10: Rebuild Stasm with new model files 27

>tasm -d ../stasm/MOD_1 ../tasm/shapes/hands.shape

rm -f ../stasm/MOD_1/log/*

rm -f ../stasm/MOD_1/mh/*

Generating ../stasm/MOD_1/log/tasm.log

Reading ../tasm/shapes/hands.shape: 40 shapes

Using all 40 shapes matching mask 0x700 0x0 (0000 ... 0069)

(Mask0 0x700 is BadImg Cropped Obscured)

--- Generating the shape model ---

Reference shape 0000 is at index 0 and has 56 landmarks

Mean shape outermost points (27,55) angle -6.97 degrees

Do not know how to convert a 56 point shape to a 17 point face...

99% percent variance is explained by the first 10 shape eigs: 63 17 8 4 2 2 1 1 0 0%

Generating mean shape aligned to the facedets

no facedets in the shapefile

opening face detector (TASM_FACEDET_MINWIDTH is 50)

0000: found face in the image...

will not search for eyes or mouth (TASM_DET_EYES_AND_MOUTH is false)

Generating ../stasm/MOD_1/log/facedet.shape

Done generating mean shape aligned to the facedets

40 faces detected (100.00%), 0 facedets in the shapefile, 40 facedets in the images

0 facedet false positives, 0 shapes with missing landmarks

40 faces actually used (valid facedet and all points) (100.00% of the shapes in the shapefile)

Generating ../stasm/MOD_1/mh/yaw00_shapemodel.mh

[3.3 secs to generate the shape model]

--- Generating images for manual checking of the 56 point landmark table ---

../stasm/MOD_1/log/landmark00.bmp...

../stasm/MOD_1/log/meanshape.bmp

../stasm/MOD_1/log/shape_all56.bmp

No points have partners in the 56 point landmark table

--- Generating yaw00.mh from the landmark table ---

Generating ../stasm/MOD_1/mh/yaw00.mh

--- Generating the descriptor models from 40 shapes ---

Pyramid level 0 reading 40 training images [2.9 secs]

Generating pyramid level 0 models

Generating ../stasm/MOD_1/mh/yaw00_lev0_p00_classic.mh...

0_1_2_3_4_5_6_7_8_9_0 [0.4 secs]

Pyramid level 1 reading 40 training images [2.2 secs]

Generating pyramid level 1 models 0_1_2_3_4_5_6_7_8_9_0 [0.3 secs]

Pyramid level 2 reading 40 training images [1.8 secs]

Generating pyramid level 2 models 0_1_2_3_4_5_6_7_8_9_0 [0.3 secs]

Pyramid level 3 reading 40 training images [1.8 secs]

Generating pyramid level 3 models 0_1_2_3_4_5_6_7_8_9_0 [0.4 secs]

[Total time 19.7 secs, 54% physical mem all processes, 16MB peak this process]

Figure 4.2: Tasm prints for the hand example.

4.10 Step 10: Rebuild Stasm with new model files

Rebuild the Stasm executables.

4.11 Step 11: Test the new version of Stasm

Do a basic test of our new version of Stasm with something like

4.12 Step 12: Run Tasm with the complete set of shapes 28

Figure 4.3:
An example fit from our toy hand model

Stasm has confused the boundaries be-
tween some of the fingers.

stasm /faces/hands/0000.jpg

Manually examine the output image 0000 stasm.bmp. The actual fit will most likely
be unimpressive because we used only 40 images to build the model (Figure 4.3).

4.12 Step 12: Run Tasm with the complete set of

shapes

This step is not necessary since we already used all available images in Section 4.9.

4.13 Step 13: Tune the model

To measure our model’s performance, run the Swas utility: For example:

swas ../tasm/shapes/hands.shape

Plot the resulting fit file using MATLAB or similar.

There is not much point in tuning this toy model. Perhaps we could minimize the finger
confusion in Figure 4.3 by playing with EYEMOUTH DIST, neigs, and bmax, or by using
HATs instead of 1D profiles (although hand rotation may be an issue with HATs).

Chapter 5

Shapefiles

Shapefiles are central to training and testing Stasm models. A shapefile is a text file
which lists the basename of each image and its landmarks (Figure 5.1).

Also associated with each shape is a optional set of face attributes (also called tag bits in
the code). For example, we can specify that the face is wearing glasses or has facial hair.
See atface.h for the bit definitions. To see exactly how Tasm uses the tag bits, grep
AT in ../tasm/src/*, and especially look at the function PointUsableForTraining.

Use the tool Marki for checking and creating shapefiles (Chapter 8).

5.1 The Directories string

Near the top of the shapefile is the Directories string.

This is a list of one or more directories (separated by semicolons) specifying where the
images are stored.

You should edit this string for your environment.

5.2 Face detector records in the shapefile

Face detector results can be stored in the shapefile. For speed, Tasm will use these
facedets if available instead of invoking the face detector for each image (Section 3.9.2).

Facedets are stored in the shapefile with the tag 81000000. See the lower part of
Figure 5.1 and muct68 nomirror.shape for examples.

Use the CtrlQ key in Marki to check the facedet record for an image. Marki will draw
the facedet rectangle, and show the eye and mouth positions if available (Figure 5.2).

5.2 Face detector records in the shapefile 30

shape # first word must be "shape", comments are preceded by "#"

"Directories" is the image search path with each directory separated by a semicolon

Directories /faces/muct/jpg;/faces/muct/jpg-mirror

0000 image1 # attributes (in hex) and image name (without JPG suffix)

{ 68 2 # a matrix with 68 rows, each row is the x y coordinates of a point

201 347

201 380

0 0 # special coords 0,0 means that the point is missing

202 407

...

}

0004 image2 # attribute bit 4 means the face is wearing glasses, see atface.h

{ 68 2

162 356

157 386

...

}

...

frontal face detector records (optional) have a tag 81000000

81000000 image1 # frontal face detector record

{ 1 10 # a vector with 10 elements

291 367 218 218 # x, y, width, height

249 343 330 336 # xlefteye, ylefteye, xrighteye, yrighteye (optional)

290 436 # xmouthx, ymouth (optional)

rot, yaw (optional, not included here)

}

81000000 image2

{ 1 10

244 274 221 221

199 244 292 255

99999 99999 # special value 99999 indicates mouth not found

}

...

Figure 5.1: An example shapefile.

Facedets are stored as vectors in the file, ordered as per the DetPar format defined in
misc.h:

struct DetPar // face and feature detector parameters

{

double x, y; // center of detector shape

double width, height; // width and height of detector shape

double lex, ley; // center of left eye (left and right are wrt the viewer)

double rex, rey; // center of right eye

double mouthx, mouthy; // center of mouth

... // extra fields

}

5.2 Face detector records in the shapefile 31

Figure 5.2: Marki showing the
detected face, eye, and mouth in
the shapefile

Use CtrlQ within Marki to
toggle display of these detector
results.

5.2.1 How to add facedets to a shapefile

This section tells you how to add facedets to a shapefile.

First if necessary incorporate your new face, mouth and eye detector XML files into
the Stasm source code (Section 3.7.1).

Then run Tasm on the shapefile without facedets. Tasm will create a file facedet.shape
in the log subdirectory (Section 5.2.2). Manually paste the face detector records from
facedet.shape to the end of the shapefile (as was done for example in muct68 nomirror.shape).

Facedets that are deemed invalid by Tasm (Section 3.7.4) will not appear in facedet.shape.

Note that if we later modify the face detector then we will also of course have to update
the facedets in the shapefile. This makes the shapefile consistent with the face detector
used during the landmark search. If we don’t update the shapefile, Tasm will generate
a mean shape aligned incorrectly. This will cause a (perhaps subtle) degradation in fit
quality.

Facedets for non-frontal detectors can also be stored in the shapefile. These are stored
using tag 82000000 and similar, see atface.h. This is currently not used in the released
version of Stasm. Pose data can also be stored, although once again this is currently
not used in the released version of Stasm.

5.2 Face detector records in the shapefile 32

5.2.2 What triggers generation of facedet.shape?

In the current implementation, Tasm creates facedet.shape if less than 60 percent of
the shapes in the shapefile have an associated facedet record. Otherwise, to save time
Tasm does not generate facedet.shape.

The assumption is that if most of the shapes have a facedet record, then a facedet record
is missing only because the face detector failed to find the face when the shapefile was
first created, so don’t re-search for it now. See the function
MustSearchImgIfFaceDetNotInShapefile.

To force generation of facedets if necessary, manually remove the existing facedets from
the shapefile before running Tasm.

5.2.3 Eyes and mouths in facedet.shape

When creating facedet.shape, Tasm will also invoke the eye and mouth detectors and
include the eyes and mouths in the facedet records. But this only happens if
TASM FACEDET INCLUDES EYES AND MOUTH in tasmconf.h is set. Typically we would set
this false before running Tasm if we are not working with faces (Section 4.7.3).

Tasm itself does not use the eye and mouth positions, but includes them in the shapefile
for possible other uses.

A value of 99999 in an eye and mouth field (see the definition of INVALID in misc.h)
means that the eye or mouth was not found.

Chapter 6

The landmark table

The landmark table is a C++ include file listing each landmark and its characteristics.
See landtab muct68.h for an example.

For each landmark we have the following information:

struct LANDMARK_INFO // landmark information

{

int partner; // symmetrical partner point, -1 means no partner

int prev, next; // previous and next point

// special val -1 means prev=current-1 and next=current+1

double weight; // weight of landmark relative to others (for shape mod)

unsigned bits; // used only during training (AT_Glasses, etc.)

};

The partner field is used to renumber landmarks when mirroring images (Chapter 10).

The prev and next fields set directions for classical 1D profiles. (See [2] Section 5.4.8
”Whisker Directions”). See these fields to -1 if you are not sure.

The weight field is used for discounting points in the shape model. (For example, in
the standard Stasm 77-point model, the shape model doesn’t use the forehead points
suggested by the descriptor models because the forehead suggestions are unreliable.)
See this field to 1 if you are not sure.

The bits fields use the definitions in atface.h. See the function PointUsableForTraining

to see how Tasm uses these bits during training. See these bits to 0 if you are not sure.

Chapter 7

Images generated by Tasm

This section describes the images which Tasm generates for sanity checking. These
images go into the log directory.

7.1 The landmark images

An image is produced for each landmark in the landmark table (Figure 7.1). Use these
images to check the landmark table.

Figure 7.1: A landmark image generated by
Tasm.

This example is for landmark 3.

The previous, next, and partner point
annotations are generated from point num-
bers in the landmark table.

If the landmark table has an incorrect
entry it will usually be obvious in the
image.

7.2 The meanshape image 35

7.2 The meanshape image

This shows the mean shape superimposed on the first face in the shapefile.

7.3 The shapeN images

These images are for checking the conversion of the shape to 17 points (in shape17.cpp)
and to other numbers of points (in convshape.cpp). Each image shows the first face
with the converted shape superimposed. Figure 3.3 is an example.

Chapter 8

Marki

Marki is a tool for manual landmarking. It is used to create and check shapefiles. Its
zooming and other features facilitate accurate and fast landmarking. We have used it
in house to manually landmark tens of thousands of images.

The Windows executable for Marki is supplied with the Stasm release. This is a 64-bit
executable built with OpenCV 2.4.0, so make sure you have the OpenCV 2.4.0 64-bit
DLLs on your path

Marki has not yet been ported to the Stasm 4 sources, and so the full source code for
Marki is not yet supplied, although marki.cpp is supplied as a form of documentation.

Mouse clicks within Marki will move landmarks, so to prevent mishaps where someone
inadvertently modifies a shapefile, change the shapefiles to read-only (after modifying
the Directories strings for your environment):

chmod 444 ../tasm/shapes/*.shape

To look at the contents of a shapefile use the -V flag. The -V flag (for “view”) prevents
anyone from modifying the shapefile by mistake:

marki -V ../tasm/shapes/muct68.shape

You can also use the provided Windows executable cshapes.exe for summarizing
shapefiles:

cshapes ../tasm/shapes/muct68.shape

To automatically check that all images are accessible, use the -C flag:

marki -C ../tasm/shapes/muct68.shape

Use marki -? for a list of the other flags.

8.1 Using Marki

From within Marki click on the help button to see what keystrokes are available.
For example, PageDn or Space moves to the next image, Shift-PageDn skips 10 images

8.2 Selecting the current landmark 37

ahead, and Home takes us to the first image.

Cycle forwards and backwards through images in the shapefile with buttons, keystrokes,
or the mouse wheel. You can also choose an image or landmark using the dialog window.
(Marki searches for the next image name which contains the string we enter in the dialog
window; we can enter a partial name.) The tag bits (atface.h) of the current shape
are shown in the dialog window.

Change the position of a landmark with a left mouse click (Section 8.3). Most people
use Marki with their left hand on the keyboard controlling zooming and their right
hand on the mouse.

Save the modified landmarks to the shapefile using the Save button. Note by default
that this will overwrite the original shapefile. If you don’t want that, change the output
name with the -o command line flag. When saving the landmarks, Marki makes a
backup of the previous shapefile (Section 8.5).

On exit Marki will ask if you want to save the landmarks if you have not already done
so.

The current settings are remembered so the next time Marki is used it starts from where
it left off. Override the automatic return to the same landmark number with the -l

command line flag. Or revert to all the defaults with the -F flag (for “fresh”).

Marki uses the Windows registry entry HKEY CURRENT USER/Software/Marki/Config.

A note on the -p and -P flags. Be careful. Only the shapes that were read in are saved.
If the -p or -P command line flags is used, this will be a subset of the shapes in the
original shapefile.

8.2 Selecting the current landmark

Change the current landmark number with the dialog window or the CtrlN and CtrlP

keys (N and P for next and previous).

You can also change the landmark number with buttons . But to prevent mishaps,
these buttons are displayed only if the -B command line flag is used (B for buttons).

Or click on the AutoJumpToLandmark button to dynamically select the landmark
nearest the mouse pointer. This is intended for easy touch-ups or corrections but is
not efficient for mass landmarking. Right click twice to turn auto-jumping off. The
AutoJumpToLandmark button is displayed only if the -B, -H, or -V command line flags
are used.

You can also set the current landmark with the -l command line flag.

8.3 The mouse 38

8.3 The mouse

Left click changes the position of the current landmark.

The current landmark is shown in red and the others in dull red. After the click,
the new position is shown in cyan and the old in orange. Undo the click (and just
about anything else) with the Undo button or CtrlZ.

Marki displays unused landmarks (coordinates 0,0) as green Xs, interpolating their
positions from adjacent landmarks.

If the AutoNextImage button is set, Marki will automatically move to the next
image after the click. This is useful when we want to move “laterally”, setting
just one landmark in each image. We have found that is the most efficient and
consistent approach for mass landmarking.

Right click toggles DarkImage, and disables AutoJumpToLandmark if in effect.

The wheel moves backwards and forwards through the images.

8.4 Zooming

The centering and zoom buttons control zooming.

If centering is not enabled (the centering button is not pressed) the zoom setting is
ignored, and we see the whole image.

If centering is enabled, the current landmark is shown in the center of the image with
the current zoom setting. Zooming works off multiples of the eye-mouth distance. (The
idea is that at a given zoom level the size of facial features remains roughly constant
across all images.)

Marki has to estimate the eye-mouth distance if eye or mouthlandmarks are not avail-
able. Marki uses nearby landmarks to do this. If the necessary other landmarks are
not available, Marki falls back to using one quarter the image size as the eye-mouth
distance.

8.5 Backups

Things can easily go wrong when manually landmarking images. We suggest you make
manual backups in addition to the automatic backups made by Marki described below.

When you save the shapefile, Marki also creates a backup shapefile. If the original file
is example.shape the backup file will be example L99xDATE TIME.bshape, where

• 99 is the landmark number and if no coordinates were changed by the user

• x is if no other landmarks were changed and x if coordinates for other landmarks
also changed.

8.6 Preparing an initial shapefile for Marki 39

Figure 8.1: An image with just a few
points manually landmarked.

Marki shows the missing points as
green Xs.

The suffix .bshape is intended to make it easy to find or delete backup files. You will
tend to collect a large number of them.

On exit, Marki copies marki.log to a backup log file using the same naming scheme
as above but with the suffix .blog.

The .bshape and .blog backup files will be saved in the subdirectory backup, if that
directory exists. If not, they will be saved in the working directory.

8.6 Preparing an initial shapefile for Marki

Marki requires a shapefile (Chapter 5). Typically we create a initial shapefile with
dummy landmarks and then use Marki to correct the dummy landmarks.

If the rough positions of the landmarks are available then manual landmarking is easier
if we use those positions as dummy landmarks. For faces, you may be able to generate
the approximate positions of the landmarks with Stasm and manually paste the records
from the Stasm log file into the initial shapefile.

One approach is to first (manually or otherwise) landmark just a few strategic land-
marks, with the remaining landmarks marked as missing (coordinates 0,0). Marki will
string the missing landmarks between these strategic landmarks (Figure 8.1). You can
then get to work marking the missing landmarks, with the order of marking chosen to
make marking of subsequent points easier.

When choosing the stategic landmarks, remember that it’s best if the green X is near
the correct position of the landmark. This allows zooming with both the X and the
correct position simultaneously visible.

Chapter 9

Missing points and three-quarter
faces

Tasm can build a model even if some shapes have missing points. Tasm imputes the
missing points, and then proceeds as usual, building the models with the imputed
points. (Points are labeled as missing during manual landmarking typically because
they are obscured. For example, in Figure 9.1 the outer right eyebrow is around the
side of the face. A missing point is given the special coordinates 0,0.)

Missing points are typically common in three-quarter faces, where landmarks are ob-
scured by the side of the face or nose. We could avoid this problem by using a different
set of landmarks for three-quarter views, but typically we want to use the same set of
landmarks for frontal and three-quarter faces.

To build a decent model, sufficient numbers of each landmark should be present. There
should not be too many missing points. It is difficult to quantize “too many”. You
will have to experiment with your data. The current implementation arbitrarily requires
that each point must be valid in at least 33% of the shapes (ShowPercentagePointsMissing).

9.1 Example three-quarter model

This section presents an example three-quarter model built with the MUCT faces.

First modify the stasm lib.h and landmarks.h for 68 point shapes as described in
Section 3.6. Then invoke Tasm as

tasm muct68_nomirror.shape 0 0 [bc]

This builds a model with the MUCT b and c shapes (Figure 9.1). In the regular
expression [bc], the b selects the “partial-three-quarter” views and the c selects the
three-quarter views.

Alternatively, use the full MUCT shapefile with mirrored shapes, but exclude the mir-
rored shapes when invoking Tasm:

9.2 The imputed.shape file 41

Figure 9.1: Example b and c images from the MUCT set.
Note the missing points. These are displayed by Marki as green crosses and positioned
by Marki with simple linear interpolation between non-missing points.

tasm muct68.shape 0 0 "i[^r].*[bc]"

The first part of the regular expression i[^r] excludes shapes beginning with ir (i.e.
it excludes mirrored shapes). We certainly don’t want to include the left facing three-
quarter faces. (We could build a separate model for those later.)

The quotes surrounding the regular expression prevent the command shell from ex-
panding the *. We need quotes when the regular expression includes characters that
have special meaning to the shell, such as * or |. The shell strips the quotes so Tasm
sees the regular expression without the quotes.

We include the partial-three-quarter faces in the above calls to Tasm because if we use
just the three-quarter faces there would be too many missing points. If we use just the
c shapes Tasm quits after issuing the message

Point 15 is unused in 74% of the shapes

After running Tasm we can check that the mean shape is plausible by examining
log/meanshape.bmp.

9.2 The imputed.shape file

Tasm generates imputed.shape with the imputed points. This file is for manual sanity
checking of the imputed points. For example:

marki -V tasmout/log/imputed.shape

9.2 The imputed.shape file 42

Figure 9.2: Same as the previous figure, but with points imputed by Tasm.

Some imputed shapes are shown in Figure 9.2. The outermost right hand eyebrow in the
c subfigure in Figure 9.2 has been imputed too far to the right. This is understandable,
because Tasm builds the imputation model predominantly from the b shapes (because
this point is present in nearly all b shapes and missing in nearly all the c shapes). The
imputation model is a 2D model, and does not understand 3D concepts like rotation.
The shifted nearby points in the c shape in the figure cause this imputation model to
position the eyebrow point too far to the right. (In practice this seems to have at most
just a very small harmful effect on the overall fit.)

Tasm also displays a table showing the percentage of missing points at each landmark
position:

661 (44%) of 1493 shapes have all 68 points

Percentage of points unused over all shapes:

0 1 2 3 4 5 6 7 8 9

0

10 45.81 0.47 . . .

20 0.27

30 0.07

40 . . 19.69 28.40 29.07 25.32 . 19.29 . .

50

60

A dot indicates that no points are missing for the landmark in question. In this table
we see that points are missing on the outer right eyebrow and on the far side of the
nose. For example, 45.81% of the shapes are missing point 15 (the outer right eyebrow).
Conversely, this landmark is valid in about 54% of the shapes, which is easily sufficient
to build a shape model.

9.3 Issues with the above example 43

9.3 Issues with the above example

There are a few issues with the model we built in Section 9.1 above.

1. Tasm used the OpenCV frontal face detector and issued the message

1191 faces detected (79.77%)

That’s a low percentage, indicating that the face detector is not up to the task
of locating the three-quarter faces in the training data. We should really use a
more capable face detector that reliably detects three-quarter views, or use a face
detector optimized for three-quarter views.

2. The default settings in eyaw and estart settings in initasm.cpp (Section 3.7.2)
are good for frontal models but should be changed for this three-quarter model.
The start shape will be better positioned and thus the overall search results
will be better if we initialize the three-quarter model with eyaw=EYAW22 and
estart=ETART EYE AND MOUTH.

(a) The EYAW22 setting says that Stasm should search for the eyes and mouth in
search areas appropriate for right three-quarter faces. Figure 3.1 showed the
search rectangles for frontal faces. To see a similar image for your model,
run Stasm after building with SHOW IMAGES set.

You should tweak the hard-wired constants which define the search regions
in startshape.cpp and eyedet.cpp. The current values are for an in-house
three-quarter face detector which probably frames the face slightly differently
from your detector.

The 22 indicates that the faces have a nominal yaw of 22 degrees. For more
strongly yawed faces, uses YAW45. For left three-quarter faces, use EYAW 22,
note the underscore.

(b) The ETART EYE AND MOUTH setting says that Stasm should also search for the
mouth and use it to help position the start shape. In our experience with
three-quarter views, this tends to give better results (Figure 9.3).

3. We need to tune constants such as neigs and bmax. To do so, we should set aside
some images for tuning and final testing.

9.4 The imputation algorithm

As mentioned above, Tasm imputes the missing points and then builds the models with
the imputed shapes. We don’t claim that the imputation algorithm and implementation
are optimal, but have been used successfully to build multi-view models (e.g. [3]).

Tasm imputes points by first building a shape model using points that are available and
ignoring points that are missing. It then imputes the missing points using this shape
model. It does this by conforming the shape to the shape model: it pins the positions

9.4 The imputation algorithm 44

Figure 9.3: Start shapes with a three-quarter model.
Left Start shape initialized from just the eye positions (ESTART EYES).
Right Better start shape from both the eyes and mouth (ESTART EYE AND MOUTH).
This is a fairly extreme example. With other images the discrepancy will not be as big.

of the non-imputed points and uses the model (with a limited number of eigenvectors)
to predict the positions of the missing points. It iterates until the points are stable.
See tasmimpute.cpp.

Once this is done there is optional further processing which is controlled by configuration
constants in tasmconf.h. With the default settings of these constants, this further
processing does not occur. It it not clear at this time how these constants should best
be defined. We suggest you leave them disabled initially and then experiment with
different settings. The optional further processing is as follows:

(i) If TASM REBUILD SUBSET is specified, after imputing the shapes Tasm rebuilds the
shape model using the specified subset of imputed shapes. For example, in the above
example after using the b and c shapes to build the initial shape model, we can specify
that just the c shapes should be used to build the final shape model. To do this, set
TASM REBUILD SUBSET = "c". See the comments in tasmconf.h.

(ii) If TASM SUBSET DESC MODS is set true, Tasm uses only the above subset to build
the descriptor models.

Chapter 10

Mirroring shapes

If our objects are symmetrical (e.g. frontal faces), we can effectively double the number
of training images by mirroring the existing images. We will need to add the mirrored
shapes to the shapefile. The shapemirror utility described below can be used to
generate the mirrored images and shapes.

By convention in Stasm the second character of the filename of mirrored images is r for
“reversed”. Thus b0000.jpg becomes br0000.jpg. This convention allows easy inclu-
sion or exclusion of mirrored shapes using regular expressions on the Tasm command
line.

10.1 The shapemirror utility

The shapemirror utility mirrors the shapes in a shapefile and also writes the mirrored
images to the mirrored subdirectory. Use it like this

shapemirror ../tasm/shapes/muct68_nomirror.shape

A message like

NELEMS(LANDMARK_INFO_TAB) 77 != number of points 68 in the shapefile

means we need to update the landmarks.h file for the landmark table appropriate for
the shapefile (Section 3.6). So in the current example, in landmarks.h change

#include "landtab_muct77.h"

to
#include "../tasm/landtab/landtab_muct68.h"

After rebuilding the executables with the new landmark table, we can check the table
by running Tasm and examining the images in the log directory (Section 7.1):

tasm ../tasm/shapes/muct68_nomirror.shape 3

10.1 The shapemirror utility 46

The 3 in the above command line is optional. It limits Tasm to just the first three
shapes, for speed, because all we need here are the landmark images in the log directory,
and we don’t need to waste time building a full model. In the landmark images in the
Tasm log directory, our only concern for this exercise is to check the partner point for
each landmark. The partner point is the point’s number after it has been mirrored.

Now run shapemirror:

shapemirror ../tasm/shapes/muct68_nomirror.shape

which will print the following

>shapemirror ../tasm/shapes/muct68_nomirror.shape

mkdir mirrored

Reading ../tasm/shapes/muct68_nomirror.shape: 3755 shapes

Generating muct68_nomirror_r.shape and mirrored/*r.jpg

0.0% 0 /faces/muct/jpg/i000qa-fn.jpg

0.0% 1 /faces/muct/jpg/i000qb-fn.jpg

0.1% 2 /faces/muct/jpg/i000qc-fn.jpg

0.1% 3 /faces/muct/jpg/i000qd-fn.jpg

...

100.0% 3754 /faces/muct/jpg/i624ze-fn.jpg

Ignoring facedet records (run Tasm to generate the facedets)

Processing pose data: 0 records

This creates a new shapefile with r appended to the original name (we can use Marki
to verify the file’s contents). The mirrored images go into the mirrored subdirectory.
Typically we would now move the images from the mirrored subdirectory to their final
destination directory.

Note that shapemirror does not mirror the facedet records (Section 3.9.2). This is
because face detectors typically return not-exactly-mirrored results on mirrored im-
ages. To get the facedet records, run Tasm on the mirrored shapefile to generate
facedet.shape (Section 5.2.1):

tasm muct68_nomirror_r.shape

Create a combined shapefile by manually pasting (i) the original shapefile, (ii) the
shapes from the mirrored shapefile, (iii) the facedets from the original shapefile, and
(iv) the facedets from facedet.shape for the mirrored shapefile. Finally, manually
edit the Directories string in this combined shapefile to include the mirrored image
directory.

Check the results with Marki:

marki -V combined.shape

Within Marki, use CtrlQ to display the face detector records. Enter just r in the dialog
window to search for the first mirrored shape (i.e. the first image with r in its name).

Chapter 11

FAQs and error messages

11.1 NELEMS(LANDMARK INFO TAB) 77 does not match the number of points 68 in file.shape

You built Tasm with a landmark table with 77 points, but invoked Tasm with a shapefile
with 68 points. Probably you need to change landmark.h to use a 68 point landmark
table (Section 3.6).

11.2 The application was unable to start correctly (0xc000007b)

You are probably on Windows system and your 32-bit application is trying to use a
64-bit DLL, or vice versa. Check that the correct DLLs are on your DLL path, or copy
the correct DLLs into the current directory. See copydlls.bat (you will have to tweak
the OpenCV directory specified in that batch file).

11.3 Warning: Only plain strings (not regexs) are supported

The executable you are using does not support regular expressions. See the note on
page 17. Stasm will do a plain substring match, not a regex match.

11.4 How to rebuild the models for the released version of Stasm?

You can’t, because the released version of Stasm was built with a 77-point shapefile
muct 77.shape which for historical reasons was created on cropped versions of the
MUCT images. The cropped images are not yet prepared for release.

Note that Stasm 4.1.0 gives slightly different results from Stasm 4.0.0, which used
identical training data but slightly different versions of Tasm and the start shape code.

Bibliography

[1] T. F. Cootes and C. J. Taylor. Technical Report: Statistical Models of Appearance
for Computer Vision. The University of Manchester School of Medicine, 2004.
http://www.isbe.man.ac.uk/~bim/Models/app_models.pdf.

[2] S. Milborrow. Locating Facial Features with Active Shape Models. Master’s Thesis.
University of Cape Town (Department of Image Processing), 2007. http://www.

milbo.users.sonic.net/stasm.

[3] S. Milborrow, Tom E. Bishop, and F. Nicolls. Multiview Active Shape Models with
SIFT Descriptors for the 300-W Face Landmark Challenge. ICCV, 2013.

[4] S. Milborrow, J. Morkel, and F. Nicolls. The MUCT Landmarked Face Database.
Pattern Recognition Association of South Africa, 2010.

[5] S. Milborrow and F. Nicolls. Active Shape Models with SIFT Descriptors and MARS.
VISAPP, 2014.

http://www.isbe.man.ac.uk/~bim/Models/app_models.pdf
http://www.milbo.users.sonic.net/stasm
http://www.milbo.users.sonic.net/stasm

